Recognizing patterns of visual field loss using unsupervised machine learning

被引:11
|
作者
Yousefi, Siamak [1 ]
Goldbaum, Michael H. [1 ]
Zangwill, Linda M. [1 ]
Medeiros, Felipe A. [1 ]
Bowd, Christopher [1 ]
机构
[1] Univ Calif San Diego, Dept Ophthalmol, Hamilton Glaucoma Ctr, La Jolla, CA 92093 USA
来源
关键词
machine learning; unsupervised clustering; pattern recognition; glaucoma; visual field loss; INDEPENDENT COMPONENT ANALYSIS; DOUBLING TECHNOLOGY PERIMETRY; AUTOMATED PERIMETRY; IDENTIFY PATTERNS; GLAUCOMA; DIAGNOSIS; PROGRESSION; DEFECTS; MIXTURE;
D O I
10.1117/12.2043145
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Glaucoma is a potentially blinding optic neuropathy that results in a decrease in visual sensitivity. Visual field abnormalities (decreased visual sensitivity on psychophysical tests) are the primary means of glaucoma diagnosis. One form of visual field testing is Frequency Doubling Technology (FDT) that tests sensitivity at 52 points within the visual field. Like other psychophysical tests used in clinical practice, FDT results yield specific patterns of defect indicative of the disease. We used Gaussian Mixture Model with Expectation Maximization (GEM), (EM is used to estimate the model parameters) to automatically separate FDT data into clusters of normal and abnormal eyes. Principal component analysis (PCA) was used to decompose each cluster into different axes (patterns). FDT measurements were obtained from 1,190 eyes with normal FDT results and 786 eyes with abnormal (i.e., glaucomatous) FDT results, recruited from a university-based, longitudinal, multi-center, clinical study on glaucoma. The GEM input was the 52-point FDT threshold sensitivities for all eyes. The optimal GEM model separated the FDT fields into 3 clusters. Cluster 1 contained 94% normal fields (94% specificity) and clusters 2 and 3 combined, contained 77% abnormal fields (77% sensitivity). For clusters 1, 2 and 3 the optimal number of PCA-identified axes were 2, 2 and 5, respectively. GEM with PCA successfully separated FDT fields from healthy and glaucoma eyes and identified familiar glaucomatous patterns of loss.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Glaucomatous patterns of binocular visual field loss identified by unsupervised machine learning
    Bowd, Christopher
    Yousefi, Siamak
    Meira-Freitas, Daniel
    Goldbaum, Michael Henry
    Zangwill, Linda M.
    Weinreb, Robert N.
    Liebmann, Jeffrey M.
    Girkin, Christopher A.
    Medeiros, Felipe A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [2] Patterns of Visual Field Loss in Retinitis Pigmentosa found using Unsupervised Machine Learning of Goldmann Perimetry
    Reeves, Stephanie
    Elze, Tobias
    Sandberg, Michael
    Weigel-DiFranco, Carol
    Woods, Russell L.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [3] Unsupervised Machine Learning Identifies Quantifiable Patterns of Visual Field Loss in Idiopathic Intracranial Hypertension
    Doshi, Hiten
    Solli, Elena
    Elze, Tobias
    Pasquale, Louis R.
    Wall, Michael
    Kupersmith, Mark J.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (09):
  • [4] Glaucoma subtyping based on visual field progression using unsupervised machine learning
    Huang, Xiaoqin
    Poursoroush, Asma
    Sun, Jian
    Pasquale, Louis R.
    Boland, Michael
    Johnson, Chris A.
    Yousefi, Siamak
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [5] Unsupervised Machine Learning Shows Change in Visual Field Loss in the Idiopathic Intracranial Hypertension Treatment Trial
    Doshi, Hiten
    Solli, Elena
    Elze, Tobias
    Pasquale, Louis R.
    Wall, Michael
    Kupersmith, Mark J.
    OPHTHALMOLOGY, 2022, 129 (08) : 903 - 911
  • [6] Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects
    Goldbaum, MH
    Sample, PA
    Zhang, ZH
    Chan, KL
    Hao, JC
    Lee, TW
    Boden, C
    Bowd, C
    Bourne, R
    Zangwill, L
    Sejnowski, T
    Spinak, D
    Weinreb, RN
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46 (10) : 3676 - 3683
  • [7] Patterns of Neuronal and Central Visual Field Loss in Optic Neuritis at Outcome Identified by Machine Learning
    Szanto, David
    Wang, Jui-Kai
    Woods, Brian
    Elze, Tobias
    Garvin, Mona K.
    Pasquale, Louis R.
    Kardon, Randy H.
    Branco, Joseph
    Kupersmith, Mark J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [8] Macular patterns of neuronal and visual field loss in recovered optic neuritis identified by machine learning
    Szanto, David
    Wang, Jui-Kai
    Woods, Brian
    Elze, Tobias
    Garvin, Mona K.
    Pasquale, Louis R.
    Kardon, Randy H.
    Branco, Joseph
    Kupersmith, Mark J.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] Topological data analysis via unsupervised machine learning for recognizing atmospheric river patterns on flood detection
    Ohanuba, F. O.
    Ismail, M. T.
    Ali, M. K. Majahar
    SCIENTIFIC AFRICAN, 2021, 13
  • [10] Using unsupervised learning with variational Bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects
    Sample, PA
    Chan, KL
    Boden, C
    Lee, TW
    Blumenthal, EZ
    Weinreb, RN
    Bernd, A
    Pascual, J
    Hao, JC
    Sejnowski, T
    Goldbaum, MH
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 (08) : 2596 - 2605