Prediction of homologous recombination deficiency from cancer gene expression data

被引:0
|
作者
Kang, Jun [1 ]
Lee, Jieun [2 ]
Lee, Ahwon [1 ,3 ]
Lee, Youn Soo [1 ,4 ]
机构
[1] Catholic Univ Korea, Dept Hosp Pathol, Seoul St Marys Hosp, Coll Med, Seoul St, Seoul, South Korea
[2] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Dept Internal Med,Div Med Oncol, Seoul, South Korea
[3] Catholic Univ Korea, Canc Res Inst, Seoul, South Korea
[4] Catholic Univ Korea, Dept Hosp Pathol, Seoul St Marys Hosp, Coll Med, 222 Banpo daero, Seoul 06591, South Korea
基金
新加坡国家研究基金会;
关键词
Clinical decision rule; poly(ADP-ribose) polymerase inhibitor; probability learning; recombinational DNA repair; transcriptome; homologous recombination deficiency; OVARIAN; CHEMOTHERAPY; RESISTANCE; APOPTOSIS; PLATINUM; THERAPY; REPAIR;
D O I
10.1177/03000605221133655
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
ObjectiveHomologous recombination deficiency (HRD) is the main mechanism of tumorigenesis in some cancers. HRD causes abnormal double-strand break repair, resulting in genomic scars. Some scoring HRD tests have been approved as companion diagnostics of polyadenosine diphosphate-ribose polymerase (PARP) inhibitor treatment. This study aimed to build an HRD prediction model using gene expression data from various cancer types. MethodsThe cancer genome atlas data were used for HRD prediction modeling. A total of 10,567 cases of 33 cancer types were included, and expression data from 5128 out of 20,502 genes were included as predictors. A penalized logistic regression model was chosen as a modeling technique. ResultsThe area under the curve of the receiver operating characteristic curve of HRD status prediction was 0.98 for the training set and 0.93 for the test set. The accuracy of HRD status prediction was 0.93 for the training set and 0.88 for the test set. ConclusionsOur study suggests that the HRD prediction model based on penalized logistic regression using gene expression data can be used to select patients for treatment with PARP inhibitors.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Gene expression signature for predicting homologous recombination deficiency in triple-negative breast cancer
    Pan, Jia-Wern
    Tan, Zi-Ching
    Ng, Pei-Sze
    Zabidi, Muhammad Mamduh Ahmad
    Fatin, Putri Nur
    Teo, Jie-Ying
    Hasan, Siti Norhidayu
    Islam, Tania
    Teoh, Li-Ying
    Jamaris, Suniza
    See, Mee-Hoong
    Yip, Cheng-Har
    Rajadurai, Pathmanathan
    Looi, Lai-Meng
    Taib, Nur Aishah Mohd
    Rueda, Oscar M.
    Caldas, Carlos
    Chin, Suet-Feung
    Lim, Joanna
    Teo, Soo-Hwang
    NPJ BREAST CANCER, 2024, 10 (01)
  • [2] Homologous recombination deficiency and ovarian cancer
    Ledermann, Jonathan A.
    Drew, Yvette
    Kristeleit, Rebecca S.
    EUROPEAN JOURNAL OF CANCER, 2016, 60 : 49 - 58
  • [3] Biomarkers for Homologous Recombination Deficiency in Cancer
    Hoppe, Michal M.
    Sundar, Raghav
    Tan, David S. P.
    Jeyasekharan, Anand D.
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2018, 110 (07): : 704 - 713
  • [4] Homologous recombination deficiency in breast cancer
    Thomas Bartl
    Alex Farr
    memo - Magazine of European Medical Oncology, 2020, 13 : 375 - 379
  • [5] Biomarkers for Homologous Recombination Deficiency in Cancer
    Wagener-Ryczek, Svenja
    Merkelbach-Bruse, Sabine
    Siemanowski, Janna
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (07):
  • [6] Homologous recombination deficiency in breast cancer
    Bartl, Thomas
    Farr, Alex
    MEMO-MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY, 2020, 13 (04) : 375 - 379
  • [7] Correlation between gene expression and mutator phenotype predicts homologous recombination deficiency and outcome in ovarian cancer
    Lu, Jianping
    Wu, Di
    Li, Chuanxing
    Zhou, Meng
    Hao, Dapeng
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2014, 92 (11): : 1159 - 1168
  • [8] Correlation between gene expression and mutator phenotype predicts homologous recombination deficiency and outcome in ovarian cancer
    Jianping Lu
    Di Wu
    Chuanxing Li
    Meng Zhou
    Dapeng Hao
    Journal of Molecular Medicine, 2014, 92 : 1159 - 1168
  • [9] Optimized detection of homologous recombination deficiency improves the prediction of clinical outcomes in cancer
    Fernando Perez-Villatoro
    Jaana Oikkonen
    Julia Casado
    Anastasiya Chernenko
    Doga C. Gulhan
    Manuela Tumiati
    Yilin Li
    Kari Lavikka
    Sakari Hietanen
    Johanna Hynninen
    Ulla-Maija Haltia
    Jaakko S. Tyrmi
    Hannele Laivuori
    Panagiotis A. Konstantinopoulos
    Sampsa Hautaniemi
    Liisa Kauppi
    Anniina Färkkilä
    npj Precision Oncology, 6
  • [10] Optimized detection of homologous recombination deficiency improves the prediction of clinical outcomes in cancer
    Perez-Villatoro, Fernando
    Oikkonen, Jaana
    Casado, Julia
    Chernenko, Anastasiya
    Gulhan, Doga C.
    Tumiati, Manuela
    Li, Yilin
    Lavikka, Kari
    Hietanen, Sakari
    Hynninen, Johanna
    Haltia, Ulla-Maija
    Tyrmi, Jaakko S.
    Laivuori, Hannele
    Konstantinopoulos, Panagiotis A.
    Hautaniemi, Sampsa
    Kauppi, Liisa
    Farkkila, Anniina
    NPJ PRECISION ONCOLOGY, 2022, 6 (01)