Feature selection combining genetic algorithm and Adaboost classifiers

被引:0
|
作者
Chouaib, H. [1 ]
Terrades, O. Ramos [2 ]
Tabbone, S. [2 ]
Cloppet, F. [1 ]
Vincent, N. [1 ]
机构
[1] Univ Paris 05, Lab CRIP5 EA 2517, Paris, France
[2] Univ Nancy 2, LORIA, Nancy, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a fast method using simple genetic algorithms (GAs) for features selection. Unlike traditional approaches using GAs, we have used the combination of Adaboost classifiers to evaluate an individual of the population. So, the fitness function we have used is defined by the error rate of this combination. This approach has been implemented and tested on the MNIST database and the results confirm the effectiveness and the robustness of the proposed approach.
引用
收藏
页码:3707 / 3710
页数:4
相关论文
共 50 条
  • [1] GENETIC ALGORITHM FOR FEATURE-SELECTION FOR PARALLEL CLASSIFIERS
    KUNCHEVA, L
    [J]. INFORMATION PROCESSING LETTERS, 1993, 46 (04) : 163 - 168
  • [2] Method to improve the performance of the AdaBoost algorithm by combining weak classifiers
    Kim, Jeong-Hyun
    Kwon, Bae-Guen
    Kim, Jin-Young
    Kang, Dong-Joong
    [J]. 2008 INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING, 2008, : 341 - +
  • [3] Combining multiple classifiers for wrapper feature selection
    Chrysostomou, Kyriacos
    Chen, Sherry Y.
    Liu, Xiaohui
    [J]. INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2008, 1 (01) : 91 - 102
  • [4] A Hybrid Feature Subset Selection by Combining Filters and Genetic Algorithm
    Singh, Suriender
    Selvakumar, S.
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION & AUTOMATION (ICCCA), 2015, : 283 - 289
  • [5] Design of Analog Audio Classifiers with AdaBoost-Based Feature Selection
    Chiu, Leung Kin
    Gestner, Brian
    Anderson, David V.
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 2469 - 2472
  • [6] Hybrid Feature Selection Algorithm Combining Information Gain Ratio and Genetic Algorithm
    Xu, Zhao-Zhao
    Shen, De-Rong
    Nie, Tie-Zheng
    Kou, Yue
    [J]. Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 1128 - 1140
  • [7] A New Approach for Binary Feature Selection and Combining Classifiers
    Asaithambi, Asai
    Valev, Ventzeslav
    Krzyzak, Adam
    Zeljkovic, Vesna
    [J]. 2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 681 - 687
  • [8] Dynamic Adaboost learning with feature selection based on parallel genetic algorithm for image annotation
    Li, Ran
    Lu, Jianjiang
    Zhang, Yafei
    Zhao, Tianzhong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2010, 23 (03) : 195 - 201
  • [9] GAdaBoost: Accelerating Adaboost Feature Selection with Genetic Algorithms
    Tolba, Mai F.
    Moustafa, Mohamed
    [J]. PROCEEDINGS OF THE 8TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, VOL 1: ECTA, 2016, : 156 - 163
  • [10] Designing genetic programming classifiers with feature selection and feature construction
    Ma, Jianbin
    Gao, Xiaoying
    [J]. APPLIED SOFT COMPUTING, 2020, 97