The Singular Value Decomposition over Completed Idempotent Semifields

被引:6
|
作者
Valverde-Albacete, Francisco J. [1 ]
Pelaez-Moreno, Carmen [1 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, Leganes 28911, Spain
关键词
idempotent singular value decomposition; formal concept analysis; complete idempotent semifields; schedule algebra; max-plus algebra; tropical algebra; min-plus algebra; FORMAL CONCEPT ANALYSIS; MATHEMATICAL MORPHOLOGY; MAX; MATRICES; DUALITY; ALGEBRA;
D O I
10.3390/math8091577
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide a basic technique for Lattice Computing: an analogue of the Singular Value Decomposition for rectangular matrices over complete idempotent semifields (i-SVD). These algebras are already complete lattices and many of their instances-the complete schedule algebra or completed max-plus semifield, the tropical algebra, and the max-times algebra-are useful in a range of applications, e.g., morphological processing. We further the task of eliciting the relation between i-SVD and the extension of Formal Concept Analysis to complete idempotent semifields (K-FCA) started in a prior work. We find out that for a matrix with entries considered in a complete idempotent semifield, the Galois connection at the heart of K-FCA provides two basis of left- and right-singular vectors to choose from, for reconstructing the matrix. These are join-dense or meet-dense sets of object or attribute concepts of the concept lattice created by the connection, and they are almost surely not pairwise orthogonal. We conclude with an attempt analogue of the fundamental theorem of linear algebra that gathers all results and discuss it in the wider setting of matrix factorization.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] The spectra of irreducible matrices over completed idempotent semifields
    Valverde-Albacete, Francisco J.
    Pelaez-Moreno, Carmen
    FUZZY SETS AND SYSTEMS, 2015, 271 : 46 - 69
  • [2] On the ranks of idempotent matrices over skew semifields
    Il'in, S. N.
    MATHEMATICAL NOTES, 2012, 91 (5-6) : 782 - 788
  • [3] Analysis of linear systems over idempotent semifields
    Fateme Olia
    Shaban Ghalandarzadeh
    Amirhossein Amiraslani
    Sedighe Jamshidvand
    Mathematical Sciences, 2020, 14 : 137 - 146
  • [4] Analysis of linear systems over idempotent semifields
    Olia, Fateme
    Ghalandarzadeh, Shaban
    Amiraslani, Amirhossein
    Jamshidvand, Sedighe
    MATHEMATICAL SCIENCES, 2020, 14 (02) : 137 - 146
  • [5] On the ranks of idempotent matrices over skew semifields
    S. N. Il’in
    Mathematical Notes, 2012, 91 : 782 - 788
  • [6] The Linear Algebra in Formal Concept Analysis over Idempotent Semifields
    Valverde-Albacete, Francisco J.
    Pelaez-Moreno, Carmen
    FORMAL CONCEPT ANALYSIS (ICFCA 2015), 2015, 9113 : 97 - 113
  • [7] Equational theories of idempotent semifields
    Metcalfe, G.
    Santschi, S.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025, 57 (03) : 771 - 785
  • [8] On the Relation between Semifield-Valued FCA and the Idempotent Singular Value Decomposition
    Valverde-Albacete, Francisco J.
    Pelaez-Moreno, Carmen
    2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [9] The Linear Algebra in Extended Formal Concept Analysis Over Idempotent Semifields
    Jose Valverde-Albacete, Francisco
    Pelaez-Moreno, Carmen
    FORMAL CONCEPT ANALYSIS, ICFCA 2017, 2017, 10308 : 211 - 227
  • [10] Solving linear systems over idempotent semifields throughLU-factorization
    Jamshidvand, Sedighe
    Ghalandarzadeh, Shaban
    Amiraslani, Amirhossein
    Olia, Fateme
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 769 - 791