Melting Heat Transfer in Thermally Stratified Magnetohydrodynamic Flow of Eyring-Powell Fluid with Homogeneous-heterogeneous Reaction

被引:4
|
作者
Javed, M. [1 ]
Farooq, M. [1 ]
Ahmad, S. [1 ]
Anjum, Aisha [1 ]
机构
[1] Riphah Int Univ, Dept Math, Islamabad 44000, Pakistan
关键词
Melting heat transfer; MHD; Eyring-Powell fluid; Homogeneous-heterogeneous reaction; Heat generation/absorption; Stagnation point; Variable sheet thickness; STAGNATION-POINT FLOW; CASSON NANOFLUID FLOW; ANALYTIC SOLUTION; STRETCHING SHEET; VELOCITY SLIP; POROUS-MEDIUM; RADIATION; NANOPARTICLES; SURFACE;
D O I
10.4283/JMAG.2019.24.2.202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Features of melting heat transfer as well as homogeneous-heterogeneous reaction in thermally stratified stagnation flow of Eyring-Powell fluid along with heat generation/absorption effects are explored in this article. Fluid flow is examined over a sheet of variable thickness in the presence of stretching phenomena. Variable strength of magnetic field is considered normal to the flow field. Suitable transformations are introduced for the sake of conversion of partial differential equations to ordinary differential equations. Homotopic method is utilized to tackle highly nonlinear problem and series solutions are attained. Behaviors of relevant parameters are portrayed for velocity, thermal and concentration distributions. Graphical results reveal that the concentration profile enhances for higher Schmidt number while it exhibits recessive behavior for increment in homogeneous reaction parameter. Larger values of heterogeneous reaction parameter result in intensified concentration field. Velocity field declines as a result of increment in fluid parameters epsilon as well as delta*.
引用
收藏
页码:202 / 211
页数:10
相关论文
共 50 条