Computational methods for discrete hidden semi-Markov chains

被引:0
|
作者
Guédon, Y [1 ]
机构
[1] CIRAD, Programme Modelisat Plantes, F-34032 Montpellier 1, France
关键词
counting distributions; hidden semi-Markov chain; interval distributions; renewal theory;
D O I
10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.3.CO;2-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a computational approach for implementing discrete hidden semi-Markov chains. A discrete hidden semi-Markov chain is composed of a non-observable or hidden process which is a finite semi-Markov chain and a discrete observable process. Hidden semi-Markov chains possess both the flexibility of hidden Markov chains for approximating complex probability distributions and the flexibility of semi-Markov chains for representing temporal structures. Efficient algorithms for computing characteristic distributions organized according to the intensity, interval and counting points of view are-described. The proposed computational approach in conjunction with statistical inference algorithms previously proposed makes discrete hidden semi-Markov chains a powerful model for the analysis of samples of non-stationary discrete sequences. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:195 / 224
页数:30
相关论文
共 50 条