CONJUGACIES OF MODEL SETS

被引:2
|
作者
Kellendonk, Johannes [1 ]
Sadun, Lorenzo [2 ]
机构
[1] Univ Claude Bernard Lyon 1, CNRS UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
来源
关键词
Tilings; dynamical systems; PATTERN-EQUIVARIANT FUNCTIONS; PURE POINT SPECTRUM; TILING SPACES; DEFORMATIONS; COHOMOLOGY;
D O I
10.3934/dcds.2017161
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a model set meeting two simple conditions: (1) the internal group H is R-n (or a product of R-n and a finite group) and (2) the window W is a finite union of disjoint polyhedra. Then any Delone set with finite local complexity (FLC) that is topologically conjugate to M is mutually locally derivable (MLD) to a model set M' that has the same internal group and window as M, but has a different projection from H x R-d to Rd. In cohomological terms, this means that the group H-an(1) (M, R) of asymptotically negligible classes has dimension n. We also exhibit a counterexample when the second hypothesis is removed, constructing two topologically conjugate FLC Delone sets, one a model set and the other not even a Meyer set.
引用
收藏
页码:3805 / 3830
页数:26
相关论文
共 50 条
  • [1] Sets of nondifferentiability for conjugacies between expanding interval maps
    Jordan, Thomas
    Kesseboehmer, Marc
    Pollicott, Mark
    Stratmann, Bernd O.
    [J]. FUNDAMENTA MATHEMATICAE, 2009, 206 : 161 - 183
  • [2] Conjugacies in the plane of a triangle
    Kimberling C.
    [J]. Aequationes mathematicae, 2002, 63 (1-2) : 158 - 167
  • [3] Leaf conjugacies on the torus
    Hammerlindl, Andy
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 896 - 933
  • [4] CONJUGACIES FOR IMPULSIVE EQUATIONS
    Barreira, Luis
    Valls, Claudia
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2012, 55 : 65 - 78
  • [5] HYPERTRANSCENDENCY OF CONJUGACIES IN COMPLEX DYNAMICS
    BECKER, PG
    BERGWEILER, W
    [J]. MATHEMATISCHE ANNALEN, 1995, 301 (03) : 463 - 468
  • [6] Conjugacies between general contractions
    Barreiro, Luis
    Valls, Claudia
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3087 - 3098
  • [7] FRACTAL DIMENSIONS AND HOMEOMORPHIC CONJUGACIES
    ARNEODO, A
    HOLSCHNEIDER, M
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (5-6) : 995 - 1020
  • [8] Reversibility of Conjugacies for Nonautonomous Equations
    Barreira, Luis
    Valls, Claudia
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (03) : 303 - 310
  • [9] Conjugacies for Tiling Dynamical Systems
    Charles Holton
    Charles Radin
    Lorenzo Sadun
    [J]. Communications in Mathematical Physics, 2005, 254 : 343 - 359
  • [10] TOPOLOGICAL CONJUGACIES AND BEHAVIOR AT INFINITY
    Barreira, Luis
    Valls, Claudia
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 687 - 701