Improved salp swarm algorithm based on particle swarm optimization for feature selection

被引:251
|
作者
Ibrahim, Rehab Ali [1 ]
Ewees, Ahmed A. [2 ,3 ]
Oliva, Diego [4 ]
Abd Elaziz, Mohamed [5 ]
Lu, Songfeng [1 ,6 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Hubei, Peoples R China
[2] Univ Bisha, Bisha, Saudi Arabia
[3] Damietta Univ, Dept Comp, Dumyat, Egypt
[4] Univ Guadalajara, CUCEI, Dept Ciencias Computac, Av Revolucion 1500, Guadalajara, Jal, Mexico
[5] Zagazig Univ, Fac Sci, Dept Math, Zagazig, Egypt
[6] Shenzhen Huazhong Univ Sci & Technol, Res Inst, Shenzhen 518063, Peoples R China
关键词
Salp swarm algorithm; Particle swarm optimization; Feature selection; Global optimization; Swarm techniques; TABU SEARCH; ROUGH SETS; SVM;
D O I
10.1007/s12652-018-1031-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection (FS) is a machine learning process commonly used to reduce the high dimensionality problems of datasets. This task permits to extract the most representative information of high sized pools of data, reducing the computational effort in other tasks as classification. This article presents a hybrid optimization method for the FS problem; it combines the slap swarm algorithm (SSA) with the particle swarm optimization. The hybridization between both approaches creates an algorithm called SSAPSO, in which the efficacy of the exploration and the exploitation steps is improved. To verify the performance of the proposed algorithm, it is tested over two experimental series, in the first one, it is compared with other similar approaches using benchmark functions. Meanwhile, in the second set of experiments, the SSAPSO is used to determine the best set of features using different UCI datasets. Where the redundant or the confusing features are removed from the original dataset while keeping or yielding a better accuracy. The experimental results provide the evidence of the enhancement in the SSAPSO regarding the performance and the accuracy without affecting the computational effort.
引用
收藏
页码:3155 / 3169
页数:15
相关论文
共 50 条
  • [1] Improved salp swarm algorithm based on particle swarm optimization for feature selection
    Rehab Ali Ibrahim
    Ahmed A. Ewees
    Diego Oliva
    Mohamed Abd Elaziz
    Songfeng Lu
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10 : 3155 - 3169
  • [2] Improved salp swarm algorithm for feature selection
    Hegazy, Ah. E.
    Makhlouf, M. A.
    El-Tawel, Gh. S.
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2020, 32 (03) : 335 - 344
  • [3] Improved salp swarm algorithm based on the levy flight for feature selection
    Balakrishnan, K.
    Dhanalakshmi, R.
    Khaire, Utkarsh Mahadeo
    [J]. JOURNAL OF SUPERCOMPUTING, 2021, 77 (11): : 12399 - 12419
  • [4] Improved salp swarm algorithm based on the levy flight for feature selection
    K. Balakrishnan
    R. Dhanalakshmi
    Utkarsh Mahadeo Khaire
    [J]. The Journal of Supercomputing, 2021, 77 : 12399 - 12419
  • [5] Novel Improved Salp Swarm Algorithm: An Application for Feature Selection
    Zivkovic, Miodrag
    Stoean, Catalin
    Chhabra, Amit
    Budimirovic, Nebojsa
    Petrovic, Aleksandar
    Bacanin, Nebojsa
    [J]. SENSORS, 2022, 22 (05)
  • [6] An improved particle swarm optimization for feature selection
    Chen, Li-Fei
    Su, Chao-Ton
    Chen, Kun-Huang
    [J]. INTELLIGENT DATA ANALYSIS, 2012, 16 (02) : 167 - 182
  • [7] An Improved Particle Swarm Optimization for Feature Selection
    Liu, Yuanning
    Wang, Gang
    Chen, Huiling
    Dong, Hao
    Zhu, Xiaodong
    Wang, Sujing
    [J]. JOURNAL OF BIONIC ENGINEERING, 2011, 8 (02) : 191 - 200
  • [8] An improved particle swarm optimization for feature selection
    Yuanning Liu
    Gang Wang
    Huiling Chen
    Hao Dong
    Xiaodong Zhu
    Sujing Wang
    [J]. Journal of Bionic Engineering, 2011, 8 : 191 - 200
  • [9] VIGILANT SALP SWARM ALGORITHM FOR FEATURE SELECTION
    Arunekumar, N. B.
    Joseph, K. Suresh
    Viswanath, J.
    Anbarasi, A.
    Padmapriya, N.
    [J]. COMPUTING AND INFORMATICS, 2023, 42 (04) : 805 - 833
  • [10] Dynamic Salp swarm algorithm for feature selection
    Tubishat, Mohammad
    Ja'afar, Salinah
    Alswaitti, Mohammed
    Mirjalili, Seyedali
    Idris, Norisma
    Ismail, Maizatul Akmar
    Omar, Mardian Shah
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 164