Hyperspectral Data Analysis for Detecting Lead Pollution in Rice

被引:0
|
作者
Zhu, Wei-hong [1 ]
Xu, Chengzhe [1 ]
机构
[1] Yanbian Univ, Minist Educ Secretary, Key Lab Nat Resources Changbai Mt & Funct Mol, Yanji 133002, Jilin, Peoples R China
关键词
Hyperspectral data; lead pollution; dimensionality reduction; feature extraction; STRESS;
D O I
10.4028/www.scientific.net/AMM.433-435.456
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new method for detecting lead pollution in rice by analyzing hyperspectral data. First, preprocessing method is used to remove the outliers which deviate so much from other hyperspectral data. Then, dimensionality-reduced data are made by using discrete wavelet transform. Finally, linear discriminant analysis is utilized to extract the feature which characterizes polluted and unpolluted rice. The experimental result based on the proposed method shows the good performance in detecting lead pollution in rice.
引用
收藏
页码:456 / 459
页数:4
相关论文
共 50 条
  • [1] Detection of Lead Pollution in Rice Using Hyperspectral Data
    Piao, Dongfan
    Zhe, Wei-hong
    Xu, Chengzhe
    [J]. SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 685 - +
  • [2] Analysis and Modeling of Hyperspectral Singularity in Rice under Cd Pollution
    Xiu Li-na
    Liu Xiang-nan
    Liu Mei-ling
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31 (01) : 192 - 196
  • [3] Derivative analysis of hyperspectral data for detecting spectral features
    Tsai, F
    Philpot, W
    [J]. IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1243 - 1245
  • [4] Analysis of the Fractal Characteristic of the Hyperspectral Curves of the Rice under Plumbum Pollution Stress
    Wu, Ling
    Liu, Xiangnan
    Liu, Meiling
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING, 2012, : 296 - 300
  • [5] Monitoring stress levels on rice with heavy metal pollution from hyperspectral reflectance data using wavelet-fractal analysis
    Liu, Meiling
    Liu, Xiangnan
    Ding, Weicui
    Wu, Ling
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2011, 13 (02): : 246 - 255
  • [6] DETECTING VEGETATION RESPONSE TO OIL POLLUTION USING HYPERSPECTRAL INDICES
    Onyia, N. N.
    Balzter, H.
    Berrio, J. C.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3963 - 3966
  • [7] In situ hyperspectral data analysis for pigment content estimation of rice leaves
    程乾
    黄敬峰
    王秀珍
    王人潮
    [J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2003, (06) : 106 - 112
  • [8] In situ hyperspectral data analysis for pigment content estimation of rice leaves
    Cheng Qian
    Huang Jing-feng
    Wang Xiu-zhen
    Wang Ren-chao
    [J]. Journal of Zhejiang University-SCIENCE A, 2003, 4 (6): : 727 - 733
  • [9] Novel analysis of hyperspectral reflectance data for detecting onset of pollen shed in maize
    Kaleita, A. L.
    Steward, B. L.
    Ewing, R. P.
    Ashlock, D. A.
    Westgate, M. E.
    Hatfield, J. L.
    [J]. TRANSACTIONS OF THE ASABE, 2006, 49 (06) : 1947 - 1954
  • [10] Hyperspectral imaging and data analysis for detecting and determining plastic contamination in seawater filtrates
    Karlsson, Therese M.
    Grahn, Hans
    van Bavel, Bert
    Geladi, Paul
    [J]. JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2016, 24 (02) : 141 - 149