Quantum chaos in the nuclear collective model. II. Peres lattices

被引:30
|
作者
Stransky, Pavel [1 ]
Hruska, Petr [1 ]
Cejnar, Pavel [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague, Czech Republic
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 06期
关键词
chaos; eigenvalues and eigenfunctions; geometry; nuclear collective model; SPIN CLUSTERS; TRANSITION; SPECTRA;
D O I
10.1103/PhysRevE.79.066201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This is a continuation of our paper [Phys. Rev. E 79, 046202 (2009)] devoted to signatures of quantum chaos in the geometric collective model of atomic nuclei. We apply the method by Peres to study ordered and disordered patterns in quantum spectra drawn as lattices in the plane of energy vs average of a chosen observable. Good qualitative agreement with standard measures of chaos is manifested. The method provides an efficient tool for studying structural changes in eigenstates across quantum spectra of general systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Peres lattices and chaos in the Dicke model
    Angel Bastarrachea-Magnani, Miguel
    Hirsch, Jorge G.
    8TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES (QTS8), 2014, 512
  • [2] Quantum chaos in the nuclear collective model: Classical-quantum correspondence
    Stransky, Pavel
    Hruska, Petr
    Cejnar, Pavel
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [3] Chaos and quantization of the three-particle generic Fermi-Pasta-Ulam-Tsingou model. II. Phenomenology of quantum eigenstates
    Yan, Hua
    Robnik, Marko
    PHYSICAL REVIEW E, 2024, 109 (05)
  • [4] Quantum chaos for nonstandard symmetry classes in the Feingold-Peres model of coupled tops
    Fan, Yiyun
    Gnutzmann, Sven
    Liang, Yuqi
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [5] Molecular dynamics simulation of the fragile glass former orthoterphenyl: A flexible molecule model. II. Collective dynamics
    Mossa, S
    Ruocco, G
    Sampoli, M
    PHYSICAL REVIEW E, 2001, 64 (02): : 215111 - 2151110
  • [6] Small bipolarons in the 2-dimensional Holstein-Hubbard model. II. Quantum bipolarons
    Proville, L
    Aubry, S
    EUROPEAN PHYSICAL JOURNAL B, 2000, 15 (03): : 405 - 421
  • [7] Small bipolarons in the 2-dimensional Holstein-Hubbard model. II. Quantum bipolarons
    L. Proville
    S. Aubry
    The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 15 : 405 - 421
  • [8] MODELLING THROMBOPOIESIS REGULATION - II. MATHEMATICAL INVESTIGATION OF THE MODEL.
    Gyoeri, I.
    Eller, J.
    Computers & mathematics with applications, 1987, 14 (9-12): : 849 - 859
  • [9] Pulsar glitches in a strangeon star model. II. The activity
    Wang, W. H.
    Lai, X. Y.
    Zhou, E. P.
    Lu, J. G.
    Zheng, X. P.
    Xu, R. X.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 500 (04) : 5336 - 5349
  • [10] The quantum HMF model: II. Bosons
    Chavanis, Pierre-Henri
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,