Production of pairs of synchronized pulses by optical parametric generation and oscillation using aperiodically poled lithium niobate

被引:2
|
作者
Carrillo-Fuentes, Miriam [1 ]
Cudney, Roger S. [1 ]
机构
[1] Ctr Invest Cient & Educ Super Ensenada, Dept Opt, Carretera Ensenada Tijuana 3918, Ensenada 22860, Baja California, Mexico
关键词
TERAHERTZ-WAVE GENERATION; FREQUENCY-GENERATION; DAST CRYSTAL; COMPACT;
D O I
10.1364/AO.58.005764
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report two sources of synchronized pairs of pulses based on optical parametric generation (OPG) and oscillation (OPO) that use aperiodically poled lithium niobate (APLN) as the nonlinear medium. The main purpose of these sources is to obtain terahertz radiation through difference-frequency generation. The APLN crystal was designed to generate two signals with their corresponding idlers from a single pump pulse; the signal wave- lengths are around 1450 nm, and the frequency difference between them is tunable between similar to 1 and 10 THz. In the OPO configuration, pumped by a Q-switched Nd:YAG laser (12 ns FWHM, 13 mJ), we obtain pairs of synchronized signals (similar to 5 ns FWHM) with a combined energy of 740 mu J; each signal has a bandwidth of <105 GHz. In the OPG configuration, we use a Q-switched Nd:YLF laser that emits shorter pulses (1.6 ns FWHM, 350 mu J), obtaining synchronized signal pulses with a combined energy of 38 mu J; each signal has a pulse width of 0.8 ns and a bandwidth of <175 GHz. The advantages of these sources for difference frequency generation are discussed. (C) 2019 Optical Society of America
引用
收藏
页码:5764 / 5769
页数:6
相关论文
共 50 条
  • [1] Simultaneous phase matching of optical parametric oscillation and second-harmonic generation in aperiodically poled lithium niobate
    Kartaloglu, T
    Figen, ZG
    Aytür, O
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2003, 20 (02) : 343 - 350
  • [2] Terahertz generation in an aperiodically poled lithium niobate parametric oscillator
    Su, H.
    Ruan, S. C.
    Zhang, M.
    Xia, L. Z.
    Zhou, H.
    [J]. TERAHERTZ PHOTONICS, 2008, 6840
  • [3] New kind of WDM.laser source by optical parametric oscillation in aperiodically poled lithium niobate
    Wu, F
    Chen, XF
    Xia, YX
    Chen, YL
    [J]. APOC 2002: ASIA-PACIFIC OPTICAL AND WIRELESS COMMUNICATIONS; MATERIALS AND DEVICES FOR OPTICAL AND WIRELESS COMMUNICATIONS, 2002, 4905 : 414 - 422
  • [4] Multiple wavelength generation using aperiodically poled lithium niobate
    M. Robles-Agudo
    R. S. Cudney
    [J]. Applied Physics B, 2011, 103 : 99 - 106
  • [5] Multiple wavelength generation using aperiodically poled lithium niobate
    Robles-Agudo, M.
    Cudney, R. S.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 103 (01): : 99 - 106
  • [6] Pulsed optical parametric generation, amplification, and oscillation in monolithic periodically poled lithium niobate crystals
    Chiang, AC
    Wang, TD
    Lin, YY
    Lau, CW
    Chen, YH
    Wong, BC
    Huang, YC
    Shy, JT
    Lan, YP
    Chen, YF
    Tsao, PH
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (06) : 791 - 799
  • [7] Optical parametric generation in periodically-poled lithium niobate
    Guan, Y
    Haus, JW
    Powers, P
    [J]. NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS DEVICES, AND APPLICATIONS III, 2004, 5337 : 60 - 70
  • [8] Generation of a Few Cycle Terahertz Pulse in Aperiodically Poled Lithium Niobate by Sequence of Pump Pulses
    Avetisyan, Y.
    Miroyan, R.
    Barsegyan, A.
    Tonouchi, M.
    [J]. 2019 44TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2019,
  • [9] Red beam generation based on aperiodically poled lithium niobate
    Figen, Ziya Gurkan
    Akin, Onur
    [J]. OPTICS COMMUNICATIONS, 2014, 317 : 67 - 77
  • [10] Tunable, pulsed multiline intracavity optical parametric oscillator using two-dimensional MgO: periodically poled lithium niobate-aperiodically poled lithium niobate
    Chen, Y. H.
    Chang, W. K.
    Chung, H. P.
    Liu, B. Z.
    Tseng, C. H.
    Chang, J. W.
    [J]. OPTICS LETTERS, 2013, 38 (18) : 3507 - 3509