ASCOT simulations of fast ion power loads to the plasma-facing components in ITER

被引:55
|
作者
Kurki-Suonio, T. [1 ]
Asunta, O. [1 ]
Hellsten, T. [2 ]
Hynonen, V. [1 ]
Johnson, T. [2 ]
Koskela, T. [1 ]
Lonnroth, J. [1 ]
Parail, V. [3 ]
Roccella, M. [4 ]
Saibene, G. [5 ]
Salmi, A. [1 ]
Sipila, S. [1 ]
机构
[1] Helsinki Univ Technol, Assn Euratom Tekes, Helsinki 02015, Finland
[2] EURATOM VR Assn, EES, KTH, S-10044 Stockholm, Sweden
[3] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[4] LT Calcoli SAS, I-23087 Merate, Lecco, Italy
[5] F4E, Barcelona 08019, Spain
基金
英国工程与自然科学研究理事会; 芬兰科学院;
关键词
FIELD RIPPLE; TOKAMAK; CONFINEMENT; REDUCTION; PARTICLES; INSERTION;
D O I
10.1088/0029-5515/49/9/095001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The wall loads due to fusion alphas as well as neutral beam injection-and ICRF-generated fast ions were simulated for ITER reference scenario-2 and scenario-4 including the effects of ferritic inserts (FIs), test blanket modules (TBMs), and 3D wall with two limiter structures. The simulations were carried out using the Monte Carlo guiding-centre orbit-following code ASCOT. The FIs were found very effective in ameliorating the detrimental effects of the toroidal ripple: the fast ion wall loads are reduced practically to their negligible axisymmetric level. The thermonuclear alpha particles overwhelmingly dominate the wall power flux. In scenario-4 practically all the power goes to the limiters, while in scenario-2 the load is fairly evenly divided between the divertor and the limiter, with hardly any power flux to other components in the first wall. This is opposite to earlier results, where hot spots were observed with 2D wall (Tobita et al 2003 Fusion Eng. Des. 65 561-8). In contrast, uncompensated ripple leads to unacceptable peak power fluxes of 0.5 MW m(-2) in scenario-2 and 1 MW m(-2) in scenario-4, with practically all power hitting the limiters and substantial flux arriving even at the unprotected first wall components. The local TBM structures were found to perturb the magnetic field structure globally and lead to increased wall loads. However, the TBM simulation results overestimate the TBM contribution due to an over-simplification in the vacuum field. Therefore the TBM results should be considered as an upper limit.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] ITER plasma-facing components
    Merola, Mario
    Loesser, D.
    Martin, A.
    Chappuis, P.
    Mitteau, R.
    Komarov, V.
    Pitts, R. A.
    Gicquel, S.
    Barabash, V.
    Giancarli, L.
    Palmer, J.
    Nakahira, M.
    Loarte, A.
    Campbell, D.
    Eaton, R.
    Kukushkin, A.
    Sugihara, M.
    Zhang, F.
    Kim, C. S.
    Raffray, R.
    Ferrand, L.
    Yao, D.
    Sadakov, S.
    Furmanek, A.
    Rozov, V.
    Hirai, T.
    Escourbiac, F.
    Jokinen, T.
    Calcagno, B.
    Mori, S.
    [J]. FUSION ENGINEERING AND DESIGN, 2010, 85 (10-12) : 2312 - 2322
  • [2] Erosion of plasma-facing components in ITER
    Federici, G
    Wuerz, H
    Janeschitz, G
    Tivey, R
    [J]. FUSION ENGINEERING AND DESIGN, 2002, 61-62 : 81 - 94
  • [3] Physics basis and design of the ITER plasma-facing components
    Pitts, R. A.
    Carpentier, S.
    Escourbiac, F.
    Hirai, T.
    Komarov, V.
    Kukushkin, A. S.
    Lisgo, S.
    Loarte, A.
    Merola, M.
    Mitteau, R.
    Raffray, A. R.
    Shimada, M.
    Stangeby, P. C.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) : S957 - S964
  • [4] Tritium inventory in the materials of the ITER plasma-facing components
    Federici, G
    Skinner, CH
    [J]. NUCLEAR FUSION RESEARCH: UNDERSTANDING PLASMA-SURFACE INTERACTIONS, 2005, 78 : 287 - 317
  • [5] BULK-BORONIZED GRAPHITES FOR PLASMA-FACING COMPONENTS IN ITER
    HIROOKA, Y
    CONN, R
    CAUSEY, R
    CROESSMANN, D
    DOERNER, R
    HOLLAND, D
    KHANDAGLE, M
    MATSUDA, T
    SMOLIK, G
    SOGABE, T
    WHITLEY, J
    WILSON, K
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1990, 176 : 473 - 480
  • [6] Metallic droplet impact simulations on plasma-facing components
    Vignitchouk, L.
    Ratynskaia, S.
    [J]. Nuclear Materials and Energy, 2024, 41
  • [7] Tritium in plasma-facing components of JET with the ITER-Like-Wall
    Pajuste, E.
    Teimane, A. S.
    Kizane, G.
    Avotina, L.
    Halitovs, M.
    Lescinskis, A.
    Vitins, A.
    Kalnina, P.
    Lagzdina, E.
    Zabolockis, R. J.
    [J]. PHYSICA SCRIPTA, 2021, 96 (12)
  • [8] Radiation loads onto plasma-facing components of JET during transient events - Experimental results and implications for ITER
    Huber, A.
    Arnoux, G.
    Beurskens, M. N. A.
    Bozhenkov, S. A.
    Brezinsek, S.
    Eich, T.
    Fuchs, C.
    Fundamenski, W.
    Jachmich, S.
    Kruezi, U.
    Lehnen, M.
    Loarte, A.
    Matthews, G. F.
    Mertens, Ph
    Morgan, P. D.
    Philipps, V.
    Pitts, R. A.
    Riccardo, V.
    Samm, U.
    Schweer, B.
    Sergienko, G.
    Stamp, M.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) : S821 - S827
  • [9] Simulation of EM loads acting on the plasma-facing units of ITER divertor cassette
    Arslanova, D. N.
    Belov, A., V
    Gapionok, E., I
    Kukhtin, V. P.
    Lamzin, E. A.
    Lyublin, B., V
    Rodin, I. Y.
    Sytchevsky, S. E.
    [J]. XLVII ZVENIGOROD INTERNATIONAL CONFERENCE ON PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 1647
  • [10] Beryllium plasma-facing components for the ITER-Like Wall Project at JET
    Rubel, M. J.
    Bailescu, V.
    Coad, J. P.
    Hirai, T.
    Likonen, J.
    Linke, J.
    Lungu, C. P.
    Matthews, G. F.
    Pedrick, L.
    Riccardo, V.
    Sundelin, P.
    Villedieu, E.
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL VACUUM CONGRESS/13TH INTERNATIONAL CONFERENCE ON SURFACE SCIENCE/INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2008, 100