Parameter inference of general nonlinear dynamical models of gene regulatory networks from small and noisy time series

被引:8
|
作者
Berrones, Arturo [1 ]
Jimenez, Edgar [2 ]
Aracelia Alcorta-Garcia, Maria [2 ]
Almaguer, F-Javier [2 ]
Pena, Brenda [1 ]
机构
[1] Univ Autonoma Nuevo Leon, Posgrado Ingn Sistemas, Fac Ingn Mecan & Elect, San Nicolas De Los Garza 66455, NL, Mexico
[2] Univ Autonoma Nuevo Leon, Posgrado Ingn Sistemas, Fac Ciencias Fis Matemat, San Nicolas De Los Garza 66455, NL, Mexico
关键词
CTRNN; Genetic regulatory networks; Genetic expression time series; Bayesian inference; DIFFERENTIAL EVOLUTION; ALGORITHMS;
D O I
10.1016/j.neucom.2015.10.095
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new inference approach to general dynamic models of gene regulatory networks (GRN) is introduced. The methodology is based on a Maximum a Posteriori (MAP) smoothing of time series data from which mean field variables of the dynamics are estimated. The interactions are modeled by a Continuous Time Recurrent Neural Network (CTRNN). Parameter estimation of the CTRNN is performed without the need to numerically solve the system of nonlinear differential equations. The method is tested on a benchmark of real genetic networks and displays superior performance, in terms of the mean squared error of the expression dynamics, compared to other formalisms. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:555 / 563
页数:9
相关论文
共 50 条
  • [1] Improved parameter estimation from noisy time series for nonlinear dynamical systems
    Nakamura, Tomomichi
    Hirata, Yoshito
    Judd, Kevin
    Kilminster, Devin
    Small, Michael
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (05): : 1741 - 1752
  • [2] Inference of gene regulatory networks from time series by Tsallis entropy
    Lopes, Fabricio Martins
    de Oliveira, Evaldo A.
    Cesar, Roberto M., Jr.
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [3] Classification-Based Inference of Dynamical Models of Gene Regulatory Networks
    Fehr, David A.
    Handzlik, Joanna E.
    Manu
    Loh, Yen Lee
    G3-GENES GENOMES GENETICS, 2019, 9 (12): : 4183 - 4195
  • [4] Inference of genetic regulatory networks from time series gene expression data
    Xu, R
    Hu, X
    Wunsch, DC
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 1215 - 1220
  • [5] Inference of noisy nonlinear differential equation models for gene regulatory networks using genetic programming and Kalman filtering
    Qian, Lijun
    Wang, Haixin
    Dougherty, Edward R.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (07) : 3327 - 3339
  • [6] From time-series transcriptomics to gene regulatory networks: A review on inference methods
    Marku, Malvina
    Pancaldi, Vera
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (08)
  • [7] A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data
    Sanchez-Castillo, M.
    Blanco, D.
    Tienda-Luna, I. M.
    Carrion, M. C.
    Huang, Yufei
    BIOINFORMATICS, 2018, 34 (06) : 964 - 970
  • [8] Bayesian inference of gene regulatory networks using gene expression time series data
    Raddel, Nicole
    Kaderali, Lars
    BIOINFORMATICS RESEARCH AND DEVELOPMENT, PROCEEDINGS, 2007, 4414 : 1 - +
  • [9] Inference of gene regulatory networks from time series expression data: A data mining approach
    Ma, Patrick C. H.
    Chan, Keith C. C.
    ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 109 - +
  • [10] Applications of dynamical inference to the analysis of noisy biological time series with hidden dynamical variables
    Duggento, A.
    Luchinsky, D. G.
    Smelyanskiy, V. N.
    Millonas, M.
    McClintock, P. V. E.
    NOISE AND FLUCTUATIONS, 2009, 1129 : 531 - +