The regularized 3D Boussinesq equations with fractional Laplacian and no diffusion

被引:23
|
作者
Bessaih, H. [1 ]
Ferrario, B. [2 ]
机构
[1] Univ Wyoming, Dept Math, Dept 3036, 1000 East Univ Ave, Laramie, WY 82071 USA
[2] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
基金
美国国家科学基金会;
关键词
Boussinesq equations; Leray-alpha models; Fractional dissipation; Transport equation; Commutators; GLOBAL WELL-POSEDNESS; EXISTENCE; VISCOSITY; SYSTEM; EULER;
D O I
10.1016/j.jde.2016.10.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the 3D regularized Boussinesq equations. The velocity equation is regularized a la Leray through a smoothing kernel of order alpha in the nonlinear term and a beta-fractional Laplacian; we consider the critical case alpha + beta =5/4 and we assume 1/2< beta <5/4. The temperature equation is a pure transport equation, where the transport velocity is regularized through the same smoothing kernel of order alpha. We prove global well posedness when the initial velocity is in H-r and the initial temperature is in Hr-beta for r > max(2 beta, beta + 1). This regularity is enough to prove uniqueness of solutions. We also prove a continuous dependence of solutions on the initial conditions. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1822 / 1849
页数:28
相关论文
共 50 条
  • [1] THE 3D INCOMPRESSIBLE BOUSSINESQ EQUATIONS WITH FRACTIONAL PARTIAL DISSIPATION
    Yang, Wanrong
    Jiu, Quansen
    Wu, Jiahong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (03) : 617 - 633
  • [2] REGULARITY CRITERIA FOR 3D BOUSSINESQ EQUATIONS WITH ZERO THERMAL DIFFUSION
    Ye, Zhuan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [3] Global regularity of the regularized Boussinesq equations with zero diffusion
    Ye, Zhuan
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 17 (03) : 245 - 273
  • [4] Conditional Regularity for the 3D Damped Boussinesq Equations with Zero Thermal Diffusion
    Li, Zhouyu
    Liu, Wenjuan
    Zhou, Qi
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (03):
  • [5] THE GLOBAL ATTRACTOR OF THE 2D BOUSSINESQ EQUATIONS WITH FRACTIONAL LAPLACIAN IN SUBCRITICAL CASE
    Huo, Wenru
    Huang, Aimin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (08): : 2531 - 2550
  • [6] Global Regularity Results of the 2D Boussinesq Equations with Fractional Laplacian Dissipation
    Zhuan Ye
    Xiaojing Xu
    Journal of Mathematical Fluid Mechanics, 2016, 18 : 361 - 380
  • [7] Global Regularity Results of the 2D Boussinesq Equations with Fractional Laplacian Dissipation
    Ye, Zhuan
    Xu, Xiaojing
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2016, 18 (02) : 361 - 380
  • [8] On global well-posedness for the 3D Boussinesq equations with fractional partial dissipation
    Ye, Zhuan
    APPLIED MATHEMATICS LETTERS, 2019, 90 : 1 - 7
  • [9] Analytical study of attractors to a regularized 3D Boussinesq system
    Azem, Leila
    Sboui, Abir
    Selmi, Ridha
    Abohelal, Afrah Fahed
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (02) : 162 - 173
  • [10] A REGULARITY CRITERION TO THE 3D BOUSSINESQ EQUATIONS
    Alghamdi, A. M.
    Ben Omrane, I
    Gala, S.
    Ragusa, M. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1795 - 1804