Seifert-Torres type formulas for the Alexander polynomial from quantum sl2

被引:0
|
作者
Harper, Matthew [1 ,2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
Knot polynomial; Alexander polynomial; Conway Potential Function; Quantum groups; Representation theory; Diagrammatic calculus; Seifert-Torres formula; POTENTIAL FUNCTION; INVARIANTS;
D O I
10.1016/j.topol.2022.108238
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a diagrammatic calculus for representations of unrolled quantum sl2 at a fourth root of unity. This allows us to prove Seifert-Torres type formulas for certain splice links using quantum algebraic methods, rather than topological methods. Other applications of this diagrammatic calculus given here are a skein relation for n-cabled double crossings and a simple proof that the quantum invariant associated with these representations determines the multivariable Alexander polynomial. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条