Lower bounds for testing bipartiteness in dense graphs

被引:12
|
作者
Bogdanov, A [1 ]
Trevisan, L [1 ]
机构
[1] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
关键词
D O I
10.1109/CCC.2004.1313803
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of testing bipartiteness in the adjacency matrix model. The best known algorithm, due to Alon and Krivelevich, distinguishes between bipartite graphs and graphs that are epsilon-far from bipartite using (O) over tilde (1/epsilon(2)) queries. We show that this is optimal for non-adaptive algorithms, up to polylogarithmic factors. We also show a lower bound of Omega(1/epsilon(3/2)) for adaptive algorithms.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [1] Tolerant Bipartiteness Testing in Dense Graphs
    Ghosh, Arijit
    Mishra, Gopinath
    Raychaudhury, Rahul
    Sen, Sayantan
    [J]. arXiv, 2022,
  • [2] Tight bounds for testing bipartiteness in general graphs
    Kaufman, T
    Krivelevich, M
    Ron, D
    [J]. SIAM JOURNAL ON COMPUTING, 2004, 33 (06) : 1441 - 1483
  • [3] Tight bounds for testing bipartiteness in general graphs
    Kaufman, T
    Krivelevich, M
    Ron, D
    [J]. APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION, 2003, 2764 : 341 - 353
  • [4] Testing Bipartiteness of Geometric Intersection Graphs
    Eppstein, David
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2009, 5 (02)
  • [5] Planar Graphs: Random Walks and Bipartiteness Testing
    Czumaj, Artur
    Monemizadeh, Morteza
    Onak, Krzysztof
    Sohler, Christian
    [J]. 2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, : 423 - 432
  • [6] Planar graphs: Random walks and bipartiteness testing
    Czumaj, Artur
    Monemizadeh, Morteza
    Onak, Krzysztof
    Sohler, Christian
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (01) : 104 - 124
  • [7] Non-bipartiteness of Graphs and the Upper Bounds of Dirichlet Forms
    Yusuke Higuchi
    Tomoyuki Shirai
    [J]. Potential Analysis, 2006, 25 : 259 - 268
  • [8] Non-bipartiteness of graphs and the upper bounds of Dirichlet forms
    Higuchi, Yusuke
    Shirai, Tomoyuki
    [J]. POTENTIAL ANALYSIS, 2006, 25 (03) : 259 - 268
  • [9] A class of graphs with equal algebraic bipartiteness and vertex bipartiteness
    He, Jiaojiao
    [J]. PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 111 - 114
  • [10] Lower bounds for the energy of graphs
    Jahanbani, Akbar
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (01) : 88 - 96