Spin-orbit torques in structures with asymmetric dusting layers

被引:15
|
作者
Razavi, Armin [1 ]
Wu, Hao [1 ]
Dai, Bingqian [1 ]
He, Haoran [1 ]
Wu, Di [1 ]
Wong, Kin [1 ]
Yu, Guoqiang [2 ]
Wang, Kang L. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Sci, Los Angeles, CA 90095 USA
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 北京市自然科学基金;
关键词
PERPENDICULAR MAGNETIZATION; FIELD; ELECTRONS; SYMMETRY;
D O I
10.1063/5.0029347
中图分类号
O59 [应用物理学];
学科分类号
摘要
Current-induced spin-orbit torques (SOTs) in heavy metal/ferromagnet heterostructures have emerged as an efficient method for magnetization switching with applications in nonvolatile magnetic memory and logic devices. However, experimental realization of SOT switching of perpendicular magnetization requires an additional inversion symmetry breaking, calling for modifications of the conventional SOT heterostructures. In this work, we study SOTs and deterministic switching of perpendicular magnetization by inserting different asymmetric dusting layers at the heavy metal/ferromagnet interface. Similar to the previous works with lateral structural asymmetry, we study the emergence of current-induced perpendicular effective magnetic fields (H-z(eff)). By examining three different material combinations of heavy metal/dusting layers (W/IrMn, Pt/IrMn, and W/Ta), we shed light on the origins of H-z(eff); we show that H-z(eff) is generically created in all the studied asymmetric structures, has a close correlation with the interfacial magnetic anisotropy, and is independent of the signs of spin Hall angles of the materials. Furthermore, we show that the induction of H-z(eff) enables field-free deterministic SOT switching of perpendicular magnetization. Our results can be used in designing SOT heterostructures for practical applications in nonvolatile technologies.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Spin-orbit torques in asymmetric Pt/Co/Pt structures
    An, Hongyu
    Nakayama, Hiroyasu
    Kanno, Yusuke
    Nomura, Akiyo
    Haku, Satoshi
    Ando, Kazuya
    [J]. PHYSICAL REVIEW B, 2016, 94 (21)
  • [2] Spin-orbit torques in ultrathin ferromagnetic metal layers
    Mihai Miron, Ioan
    Gaudin, Gilles
    Auffret, Stephane
    Rodmacq, Bernard
    Schuhl, Alain
    Pizzini, Stefania
    Vogel, Jan
    Gambardella, Pietro
    [J]. SPINTRONICS III, 2010, 7760
  • [3] Roadmap of Spin-Orbit Torques
    Shao, Qiming
    Li, Peng
    Liu, Luqiao
    Yang, Hyunsoo
    Fukami, Shunsuke
    Razavi, Armin
    Wu, Hao
    Wang, Kang
    Freimuth, Frank
    Mokrousov, Yuriy
    Stiles, Mark D.
    Emori, Satoru
    Hoffmann, Axel
    Akerman, Johan
    Roy, Kaushik
    Wang, Jian-Ping
    Yang, See-Hun
    Garello, Kevin
    Zhang, Wei
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (07)
  • [4] Interfacial spin-orbit torques
    Amin, V. P.
    Haney, P. M.
    Stiles, M. D.
    [J]. JOURNAL OF APPLIED PHYSICS, 2020, 128 (15)
  • [5] Spin-orbit torques in action
    Brataas, Arne
    Hals, Kjetil M. D.
    [J]. NATURE NANOTECHNOLOGY, 2014, 9 (02) : 86 - 88
  • [6] Direct and inverse spin-orbit torques
    Freimuth, Frank
    Bluegel, Stefan
    Mokrousov, Yuriy
    [J]. PHYSICAL REVIEW B, 2015, 92 (06)
  • [7] A new twist on spin-orbit torques
    Pacchioni, Giulia
    [J]. NATURE REVIEWS MATERIALS, 2024, 9 (07): : 453 - 453
  • [8] Spin-orbit torques from interfacial spin-orbit coupling for various interfaces
    Kim, Kyoung-Whan
    Lee, Kyung-Jin
    Sinova, Jairo
    Lee, Hyun-Woo
    Stiles, M. D.
    [J]. PHYSICAL REVIEW B, 2017, 96 (10)
  • [9] SPINTRONICS Anatomy of spin-orbit torques
    Yamamoto, Kei
    Kurebayashi, Hidekazu
    [J]. NATURE NANOTECHNOLOGY, 2017, 12 (10) : 941 - 942
  • [10] Effect of the spin-orbit interaction at insulator/ferromagnet interfaces on spin-orbit torques
    Park, Eun-Sang
    Lee, DongJoon
    Lee, OukJae
    Min, Byoung-Chul
    Koo, Hyun Cheol
    Kim, Kyoung-Whan
    Lee, Kyung-Jin
    [J]. PHYSICAL REVIEW B, 2021, 103 (13)