TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

被引:0
|
作者
Shao, Zhuchen [1 ]
Bian, Hao [1 ]
Chen, Yang [1 ]
Wang, Yifeng [2 ]
Zhang, Jian [3 ]
Ji, Xiangyang [4 ]
Zhang, Yongbing [2 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Beijing, Peoples R China
[2] Harbin Inst Technol Shenzhen, Shenzhen, Peoples R China
[3] Peking Univ, Sch Elect & Comp Engn, Beijing, Peoples R China
[4] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively. Implementation is available at: https://github.com/szc19990412/TransMIL.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Neighborhood attention transformer multiple instance learning for whole slide image classification
    Aftab, Rukhma
    Yan, Qiang
    Zhao, Juanjuan
    Yong, Gao
    Huajie, Yue
    Urrehman, Zia
    Khalid, Faizi Mohammad
    [J]. FRONTIERS IN ONCOLOGY, 2024, 14
  • [2] MULTIPLE INSTANCE LEARNING WITH CRITICAL INSTANCE FOR WHOLE SLIDE IMAGE CLASSIFICATION
    Zhou, Yuanpin
    Lu, Yao
    [J]. 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [3] MIST: multiple instance learning network based on Swin Transformer for whole slide image classification of colorectal adenomas
    Cai, Hongbin
    Feng, Xiaobing
    Yin, Ruomeng
    Zhao, Youcai
    Guo, Lingchuan
    Fan, Xiangshan
    Liao, Jun
    [J]. JOURNAL OF PATHOLOGY, 2023, 259 (02): : 125 - 135
  • [4] Rethinking Overfitting of Multiple Instance Learning for Whole Slide Image Classification
    Song, Hongjian
    Tang, Jie
    Xiao, Hongzhao
    Hu, Juncheng
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 546 - 551
  • [5] Multiple Instance Learning with random sampling for Whole Slide Image Classification
    Keshvarikhojasteh, H.
    Pluim, J. P. W.
    Veta, M.
    [J]. DIGITAL AND COMPUTATIONAL PATHOLOGY, MEDICAL IMAGING 2024, 2024, 12933
  • [6] CaMIL: Causal Multiple Instance Learning for Whole Slide Image Classification
    Chen, Kaitao
    Sun, Shiliang
    Zhao, Jing
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2, 2024, : 1120 - 1128
  • [7] DEEP HIERARCHICAL MULTIPLE INSTANCE LEARNING FOR WHOLE SLIDE IMAGE CLASSIFICATION
    Zhou, Yuanpin
    Lu, Yao
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [8] RoFormer for Position Aware Multiple Instance Learning in Whole Slide Image Classification
    Pochet, Etienne
    Maroun, Rami
    Trullo, Roger
    [J]. MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2023, PT II, 2024, 14349 : 437 - 446
  • [9] Multiple Instance Learning Framework with Masked Hard Instance Mining for Whole Slide Image Classification
    Tang, Wenhao
    Huang, Sheng
    Zhang, Xiaoxian
    Zhou, Fengtao
    Zhang, Yi
    Liu, Bo
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 4055 - 4064
  • [10] Iterative multiple instance learning for weakly annotated whole slide image classification
    Zhou, Yuanpin
    Che, Shuanlong
    Lu, Fang
    Liu, Si
    Yan, Ziye
    Wei, Jun
    Li, Yinghua
    Ding, Xiangdong
    Lu, Yao
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (15):