Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair

被引:30
|
作者
Giannoni, Paolo [1 ]
Lazzarini, Erica [1 ,2 ]
Ceseracciu, Luca [3 ]
Barone, Alberto C. [4 ]
Quarto, Rodolfo [1 ,2 ]
Scaglione, Silvia [1 ,5 ]
机构
[1] CBA, Genoa, Italy
[2] Univ Genoa, Dept Expt Med DIMES, I-16132 Genoa, Italy
[3] Ist Italiano Tecnol, Nanophys, Genoa, Italy
[4] Natl Res Council Italy, ISTEC Inst, Faenza, Italy
[5] Natl Res Council Italy, IEIIT Inst, Genoa, Italy
关键词
cartilage tissue engineering; bone tissue engineering; porosity; progenitor cell; interface; scaffold; osteochondral; VIVO BONE-FORMATION; ARTICULAR-CARTILAGE; IN-VITRO; FABRICATION; CELLS; MODEL; CHONDROCYTES; DEGRADATION; FORCES;
D O I
10.1002/term.1651
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Treatment of full-thickness cartilage defects relies on osteochondral bilayer grafts, which mimic the microenvironment and structure of the two affected tissues: articular cartilage and subchondral bone. However, the integrity and stability of the grafts are hampered by the presence of a weak interphase, generated by the layering processes of scaffold manufacturing. We describe here the design and development of a bilayer monolithic osteochondral graft, avoiding delamination of the two distinct layers but preserving the cues for selective generation of cartilage and bone. A highly porous polycaprolactone-based graft was obtained by combining solvent casting/particulate leaching techniques. Pore structure and interconnections were designed to favour in vivo vascularization only at the bony layer. Hydroxyapatite granules were added as bioactive signals at the site of bone regeneration. Unconfined compressive tests displayed optimal elastic properties and low residual deformation of the graft after unloading (< 3%). The structural integrity of the graft was successfully validated by tension fracture tests, revealing high resistance to delamination, since fractures were never displayed at the interface of the layers (n=8). Ectopic implantation of grafts in nude mice, after seeding with bovine trabecular bone-derived mesenchymal stem cells and bovine articular chondrocytes, resulted in thick areas of mature bone surrounding ceramic granules within the bony layer, and a cartilaginous alcianophilic matrix in the chondral layer. Vascularization was mostly observed in the bony layer, with a statistically significant higher blood vessel density and mean area. Thus, the easily generated osteochondral scaffolds, since they are mechanically and biologically functional, are suitable for tissue-engineering applications for cartilage repair. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1182 / 1192
页数:11
相关论文
共 50 条
  • [1] Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair
    Emans, P. J.
    Jansen, E. J. P.
    van Iersel, D.
    Welting, T. J. M.
    Woodfield, T. B. F.
    Bulstra, S. K.
    Riesle, J.
    van Rhijn, L. W.
    Kuijer, R.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2013, 7 (09) : 751 - 756
  • [2] An in vitro tissue-engineered model for osteochondral repair
    Peretti G.M.
    Buragas M.
    Scotti C.
    Mangiavini L.
    Sosio C.
    Giancamillo A.
    Domeneghini C.
    Fraschini G.
    Sport Sciences for Health, 2006, 1 (4) : 153 - 157
  • [3] Tissue-engineered composites for the repair of large osteochondral defects
    Schaefer, D
    Martin, I
    Jundt, G
    Seidel, J
    Heberer, M
    Grodzinsky, A
    Bergin, I
    Vunjak-Novakovic, G
    Freed, LE
    ARTHRITIS AND RHEUMATISM, 2002, 46 (09): : 2524 - 2534
  • [4] A tissue-engineered tendon scaffold
    Whitlock, P. W.
    Smith, T. L.
    Shilt, J. S.
    Poehling, G. G.
    Van Dyke, M. E.
    TISSUE ENGINEERING PART A, 2008, 14 (05) : 698 - 698
  • [5] Tissue-engineered repair of osteochondral defects: Effects of the age of donor cells and host tissue
    Morihara, T
    Harwood, F
    Goomer, R
    Hirasawa, Y
    Amiel, D
    TISSUE ENGINEERING, 2002, 8 (06): : 921 - 929
  • [6] Myocardial infarct repair with a tissue-engineered extracellular matrix scaffold
    Robinson, KA
    Li, JS
    Redkar, A
    Mathison, M
    Cui, JH
    Chronos, NA
    Matheny, RG
    Badylak, SF
    CIRCULATION, 2004, 110 (17) : 397 - 397
  • [7] Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs
    Cui, Weiding
    Wang, Qing
    Chen, Gang
    Zhou, Shixiang
    Chang, Qing
    Zuo, Qiang
    Ren, Kewei
    Fan, Weimin
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2011, 111 (04) : 493 - 500
  • [8] Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model
    Ito, Y
    Ochi, M
    Adachi, N
    Sugawara, K
    Yanada, S
    Ikada, Y
    Ronakorn, P
    ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2005, 21 (10): : 1155 - 1163
  • [9] Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs
    Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
    J. Biosci. Bioeng., 4 (493-500):
  • [10] In Vivo Outcomes of Tissue-Engineered Osteochondral Grafts
    Bal, B. Sonny
    Rahaman, Mohamed N.
    Jayabalan, Prakash
    Kuroki, Keiichi
    Cockrell, Mary K.
    Yao, Jian Q.
    Cook, James L.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2010, 93B (01) : 164 - 174