Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel

被引:51
|
作者
Rapedius, Markus
Haider, Shozeb
Browne, Katharine F.
Shang, Lijun
Sansom, Mark S. P.
Baukrowitz, Thomas
Tucker, Stephen J. [1 ]
机构
[1] Univ Jena, Inst Physiol 2, Jena, Germany
[2] Univ Oxford, Struct Bioinformat & Computat Biochem Unit, Dept Biochem, Oxford OX1 2JD, England
[3] Univ Oxford, Oxford Ctr Gene Funct, Dept Physiol Anat & Genet, Oxford OX1 2JD, England
基金
英国生物技术与生命科学研究理事会;
关键词
ROMK; Kir1.1; potassium channel; Bartter syndrome;
D O I
10.1038/sj.embor.7400678
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The pH-sensitive renal potassium channel Kir1.1 is important for K+ homeostasis. Disruption of the pH-sensing mechanism causes type II Bartter syndrome. The pH sensor is thought to be an anomalously titrated lysine residue (K80) that interacts with two arginine residues as part of an 'RKR triad'. We show that a Kir1.1 orthologue from Fugu rubripes lacks this lysine and yet is still highly pH sensitive, indicating that K80 is not the H+ sensor. Instead, K80 functionally interacts with A177 on transmembrane domain 2 at the 'helix-bundle crossing' and controls the ability of pH-dependent conformational changes to induce pore closure. Although not required for pH inhibition, K80 is indispensable for the coupling of pH gating to the extracellular K+ concentration, explaining its conservation in most Kir1.1 orthologues. Furthermore, we demonstrate that instead of interacting with K80, the RKR arginine residues form highly conserved inter- and intra-subunit interactions that are important for Kir channel gating and influence pH sensitivity indirectly.
引用
收藏
页码:611 / 616
页数:6
相关论文
共 50 条
  • [1] Functional and developmental expression of a zebrafish Kir1.1 (ROMK) potassium channel homologue Kcnj1
    Abbas, Leila
    Hajihashemi, Saeed
    Stead, Lucy F.
    Cooper, Gordon J.
    Ware, Tracy L.
    Munsey, Tim S.
    Whitfield, Tanya T.
    White, Stanley J.
    JOURNAL OF PHYSIOLOGY-LONDON, 2011, 589 (06): : 1489 - 1503
  • [2] Role of conserved glycines in pH Gating of Kir1.1 (ROMK)
    Sackin, H
    Nanazashvili, M
    Palmer, LG
    Li, H
    BIOPHYSICAL JOURNAL, 2006, 90 (10) : 3582 - 3589
  • [3] A chimeric approach to identify trafficking signals in the Kir1.1(ROMK) channel
    Kim, Bo-young
    Welling, Paul A.
    FASEB JOURNAL, 2007, 21 (06): : A1332 - A1332
  • [4] Structural locus of the pH gate in the Kir1.1 inward rectifier channel
    Sackin, H
    Nanazashvili, M
    Palmer, LG
    Krambis, M
    Walters, DE
    BIOPHYSICAL JOURNAL, 2005, 88 (04) : 2597 - 2606
  • [5] ROMK (Kir1.1) pharmacology comes of age
    Kharade, Sujay V.
    Swale, Daniel R.
    Denton, Jerod S.
    CHANNELS, 2015, 9 (03) : 119 - 120
  • [6] Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium
    Wade, James B.
    Fang, Liang
    Coleman, Richard A.
    Liu, Jie
    Grimm, P. Richard
    Wang, Tong
    Welling, Paul A.
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2011, 300 (06) : F1385 - F1393
  • [7] The Kir channel immunoglobulin domain is essential for Kir1.1 (ROMK) thermodynamic stability, trafficking and gating
    Fallen, Katherine
    Banerjee, Sreedatta
    Sheehan, Jonathan
    Addison, Daniel
    Lewis, L. Michelle
    Meiler, Jens
    Denton, Jerod S.
    CHANNELS, 2009, 3 (01) : 57 - 68
  • [8] Hypertension resistance polymorphisms in ROMK (Kir1.1) alter channel function by different mechanisms
    Fang, Liang
    Li, Dimin
    Welling, Paul A.
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2010, 299 (06) : F1359 - F1364
  • [9] Moving the pH gate of the Kir1.1 inward rectifier channel
    Nanazashvili, Mikheil
    Li, Hui
    Palmer, Lawrence G.
    Walters, D. Eric
    Sackin, Henry
    CHANNELS, 2007, 1 (01)
  • [10] Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects
    Wang, WH
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2006, 290 (01) : F14 - F19