Large-scale synthesis of single-crystal molybdenum trioxide nanobelts by hot-wire chemical vapour deposition

被引:23
|
作者
Chen, Jianjun [1 ,3 ]
Wang, Mingming [2 ]
Liao, Xin [2 ]
Liu, Zhaoxiang [2 ]
Zhang, Judong [2 ]
Ding, Lijuan [2 ]
Gao, Li [1 ]
Li, Ye [2 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Machinery & Automat, Dept Mat Forming & Control Engn, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Sci Tech Univ, Coll Mat & Text, Dept Mat Engn, Hangzhou 310018, Zhejiang, Peoples R China
[3] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Molybdenum oxide; Hot-wire chemical vapor deposition; Nanobelts; Large-scale synthesis; MOO3; NANOBELTS; FIELD-EMISSION; CATHODE MATERIAL; NANOWIRE ARRAYS; SILICON FILMS; THIN-FILMS; POLYCRYSTALLINE; MICROCRYSTALLINE; PERFORMANCE; EVOLUTION;
D O I
10.1016/j.jallcom.2014.09.069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bulk quantities of molybdenum trioxide (alpha-MoO3) nanobelts were synthesized via hot wire chemical vapor deposition on the surface of the MoSi2 rod electric heater at 600 degrees C under air atmosphere. The MoO3 nanobelts grown on each MoSi2 rod were up to 20 g in weight. The possible vapor-solid growth mechanism was discussed. Before the growth of MoO3 nanobelts, SiO2 protective layers of MoSi2 rod electric heater were deoxidized by the carbothermal reduction reaction, and Mo2C was formed on the surface of the MoSi2 rods. When Mo2C was oxidized under air atmosphere, Mo-O vapor was deposited on the hot MoSi2 rod surface to form yellow MoO3 nanobelts. The hot wire chemical vapor deposition technique is desirable for the large-scale production of MoO3 nanomaterials. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:406 / 410
页数:5
相关论文
共 50 条
  • [1] Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts
    Li, XL
    Liu, JF
    Li, YD
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (25) : 4832 - 4834
  • [2] Large-scale synthesis and growth mechanism of single-crystal Se nanobelts
    Xie, Qin
    Dai, Zhou
    Huang, Wanwan
    Zhang, Wu
    Ma, Dekun
    Hu, Xiaokai
    Qian, Yitai
    [J]. CRYSTAL GROWTH & DESIGN, 2006, 6 (06) : 1514 - 1517
  • [3] Controlled Morphology of Single-Crystal Molybdenum Trioxide Nanobelts for Photocatalysis
    Liao, Min
    Wu, Lifen
    Zhang, Qunbin
    Dai, Jinyan
    Yao, Weitang
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (03) : 1917 - 1921
  • [4] Large-scale synthesis of single-crystalline Te nanobelts by a low-temperature chemical vapour deposition route
    Geng, BY
    Lin, Y
    Peng, XS
    Meng, GW
    Zhang, LD
    [J]. NANOTECHNOLOGY, 2003, 14 (09) : 983 - 986
  • [5] Hot-Wire Chemical Vapour Deposition for Silicon Nitride Waveguides
    Bucio, T. Dominguez
    Tarazona, A.
    Khokhar, A. Z.
    Mashanovich, G. Z.
    Gardes, F. Y.
    [J]. SILICON COMPATIBLE MATERIALS, PROCESSES, AND TECHNOLOGIES FOR ADVANCED INTEGRATED CIRCUITS AND EMERGING APPLICATIONS 6, 2016, 72 (04): : 269 - 272
  • [6] Synthesis of large-scale GaN nanobelts by chemical vapor deposition
    Xu, Bingshe
    Yang, Dong
    Wang, Fei
    Liang, Jian
    Ma, Shufang
    Liu, Xuguang
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (07)
  • [7] Polymer-directed large-scale synthesis of single-crystal vanadium oxide nanobelts
    Yu, JG
    Liu, SW
    Cheng, B
    Xiong, JF
    Yu, Y
    Wang, JB
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2006, 95 (2-3) : 206 - 210
  • [8] Crystal growth characterization of polycrystalline silicon films obtained by hot-wire chemical vapour deposition
    Polo, MC
    Peiro, F
    Cifre, J
    Bertomeu, J
    Puigdollers, J
    Andreu, J
    [J]. MICROSCOPY OF SEMICONDUCTING MATERIALS 1995, 1995, 146 : 503 - 506
  • [9] Microdoping compensation of microcrystalline silicon obtained by hot-wire chemical vapour deposition
    Voz, C
    Peiró, D
    Fonrodona, M
    Soler, D
    Bertomeu, J
    Andreu, J
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2000, 63 (03) : 237 - 246
  • [10] Doped zinc oxide films grown by hot-wire chemical vapour deposition
    Abrutis, A.
    Silimavicius, L.
    Kubilius, V.
    Murauskas, T.
    Saltyte, Z.
    Plausinaitiene, V.
    [J]. THIN SOLID FILMS, 2015, 576 : 88 - 97