Efficient implementation of the fast multipole method

被引:24
|
作者
Rudberg, Elias [1 ]
Salek, Pawel
机构
[1] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
[2] Royal Inst Technol, Dept Theoret Chem, SE-10691 Stockholm, Sweden
来源
JOURNAL OF CHEMICAL PHYSICS | 2006年 / 125卷 / 08期
关键词
D O I
10.1063/1.2244565
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A number of computational techniques are described that reduce the effort related to the continuous fast multipole method, used for the evaluation of Coulomb matrix elements as needed in Hartree-Fock and density functional theories. A new extent definition for Gaussian charge distributions is proposed, as well as a new way of dividing distributions into branches. Also, a new approach for estimating the error caused by truncation of multipole expansions is presented. It is found that the use of dynamically truncated multipole expansions gives a speedup of a factor of 10 in the work required for multipole interactions, compared to the case when all interactions are computed using a fixed multipole expansion order. Results of benchmark calculations on three-dimensional systems are reported, demonstrating the usefulness of our present implementation of the fast multipole method. (c) 2006 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] DERIVATION AND EFFICIENT IMPLEMENTATION OF THE FAST MULTIPOLE METHOD
    WHITE, CA
    HEADGORDON, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (08): : 6593 - 6605
  • [2] The fast multipole method: Numerical implementation
    Darve, E
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (01) : 195 - 240
  • [3] Efficient rotation of multipole expansions in the Fast Multipole Method
    Anisimov, Victor
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [4] Simple recursive implementation of fast multipole method
    Visscher, P. B.
    Apalkov, D. M.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (02) : 275 - 281
  • [5] AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD WITHOUT MULTIPOLES
    ANDERSON, CR
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (04): : 923 - 947
  • [6] Parallel implementation of fast multipole method based on JASMIN
    Cao XiaoLin
    Mo ZeYao
    Liu Xu
    Xu XiaoWen
    Zhang AiQing
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2011, 54 (04) : 757 - 766
  • [7] Parallel implementation of fast multipole method based on JASMIN
    XiaoLin Cao
    ZeYao Mo
    Xu Liu
    XiaoWen Xu
    AiQing Zhang
    [J]. Science China Information Sciences, 2011, 54 : 757 - 766
  • [8] Parallel implementation of fast multipole method based on JASMIN
    CAO XiaoLin 1
    2 Laboratory of Computational Physics in Institute of Applied Physics and Computational Mathematics
    [J]. Science China(Information Sciences), 2011, 54 (04) : 757 - 766
  • [9] A parallel implementation of the fast multipole method for Maxwell's equations
    Havé, P
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 43 (08) : 839 - 864
  • [10] Scalable and portable implementation of the fast multipole method on parallel computers
    Ogata, S
    Campbell, TJ
    Kalia, RK
    Nakano, A
    Vashishta, P
    Vemparala, S
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2003, 153 (03) : 445 - 461