Operator-valued Fourier multipliers on periodic Besov spaces and applications

被引:116
|
作者
Arendt, W [1 ]
Bu, SQ
机构
[1] Univ Ulm, Abt Angew Anal, D-89069 Ulm, Germany
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourier multipliers; Besov spaces; periodic solutions; Cauchy problem; maximal regularity;
D O I
10.1017/S0013091502000378
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 1 less than or equal to p, q less than or equal to infinity, s epsilon R and let X be a Banach space. We show that the analogue of Marcinkiewicz's Fourier multiplier theorem on L-P (T) holds for the Besov space B-p(s),(q) (T; X) if and only P if 1 < p < infinity and X is a UMD-space. Introducing stronger conditions we obtain a periodic Fourier multiplier theorem which is valid without restriction on the indices or the space (which is analogous to Amann's result (Math. Nachr. 186 (1997), 5-56) on the real line). It is used to characterize maximal regularity of periodic Cauchy problems.
引用
收藏
页码:15 / 33
页数:19
相关论文
共 50 条