The Orthogonal Subcategory Problem and the Small Object Argument

被引:7
|
作者
Adamek, Jiri [1 ]
Herbert, Michel [2 ]
Sousa, Lurdes [3 ,4 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Dept Theoret Comp Sci, D-38023 Braunschweig, Germany
[2] Amer Univ Cairo, Dept Math, Cairo 11511, Egypt
[3] Escola Super Tecnol Viseu, Dept Matemat, P-3504510 Viseu, Portugal
[4] Univ Coimbra, CMUC, P-3001454 Coimbra, Portugal
关键词
Orthogonal subcategory problem; Small object argument; Injectivity logic; Presentable morphism; Orthogonality logic;
D O I
10.1007/s10485-008-9153-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical result of P. Freyd and M. Kelly states that in "good" categories, the Orthogonal Subcategory Problem has a positive solution for all classes H of morphisms whose members are, except possibly for a subset, epimorphisms. We prove that under the same assumptions on the base category and on H, the generalization of the Small Object Argument of D. Quillen holds-that is, every object of the category has a cellular H-injective weak reflection. In locally presentable categories, we prove a sharper result: a class of morphisms is called quasi-presentable if for some cardinal lambda every member of the class is either lambda-presentable or an epimorphism. Both the Orthogonal Subcategory Problem and the Small Object Argument are valid for quasi-presentable classes. Surprisingly, in locally ranked categories (used previously to generalize Quillen's result), this is no longer true: we present a class H of morphisms, all but one being epimorphisms, such that the orthogonality subcategory H(perpendicular to) is not reflective and the injectivity subcategory Inj H is not weakly reflective. We also prove that in locally presentable categories, the Injectivity Logic and the Orthogonality Logic are complete for all quasi-presentable classes.
引用
收藏
页码:211 / 246
页数:36
相关论文
共 50 条
  • [1] The Orthogonal Subcategory Problem and the Small Object Argument
    Jiří Adámek
    Michel Hébert
    Lurdes Sousa
    [J]. Applied Categorical Structures, 2009, 17 : 211 - 246
  • [2] FREE TRIPLES AND ORTHOGONAL SUBCATEGORY PROBLEM
    WOLFF, H
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A99 - A99
  • [3] FACTORIZATIONS, LOCALIZATIONS, AND THE ORTHOGONAL SUBCATEGORY PROBLEM
    THOLEN, W
    [J]. MATHEMATISCHE NACHRICHTEN, 1983, 114 : 63 - 85
  • [4] The orthogonal subcategory problem in homotopy theory
    Casacuberta, Carles
    Chorny, Boris
    [J]. ALPINE ANTHOLOGY OF HOMOTOPY THEORY, 2006, 399 : 41 - 53
  • [5] On a fat small object argument
    Makkai, M.
    Rosicky, J.
    Vokrinek, L.
    [J]. ADVANCES IN MATHEMATICS, 2014, 254 : 49 - 68
  • [6] Understanding the Small Object Argument
    Richard Garner
    [J]. Applied Categorical Structures, 2009, 17 : 247 - 285
  • [7] Understanding the Small Object Argument
    Garner, Richard
    [J]. APPLIED CATEGORICAL STRUCTURES, 2009, 17 (03) : 247 - 285
  • [8] Understanding the small object argument
    Garner R.
    [J]. Applied Categorical Structures, 2012, 20 (2) : 103 - 141
  • [9] Subcategory-Aware Object Detection
    Yu, Xiaoyuan
    Yang, Jianchao
    Lin, Zhe
    Wang, Jiangping
    Wang, Tianjiang
    Huang, Thomas
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (09) : 1472 - 1476
  • [10] A generalization of Quillen's small object argument
    Chorny, B
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 204 (03) : 568 - 583