An interpretation for the first- and second-order phase transitions in nylon 66 crystal based on the intra- and intermolecular energy calculation

被引:6
|
作者
Itoh, T
Yamagata, T
Ishikawa, H
Hashimoto, M
Konishi, T
机构
[1] Department of Polymer Science, Faculty of Textile Science, Kyoto Institute of Technology
关键词
intra- and intermolecular energy calculation; first-order phase transition; second-order phase transition; nylon; 66; crystal; Ising model with degeneracy of energy; pressure effect on phase transitions; Lennard-Jones potential; internal rotation potential;
D O I
10.1143/JPSJ.65.3920
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Intra- and intermolecular interactions in nylon 66 crystal are calculated mainly using internal rotation and Lennard-Jones potential functions reasonably supposing that the amide planes are fixed and the hexamethylene moiety in the chain has an inversion center. Partition function is formularized on the basis of sum of the intra- and intermolecular interaction potentials in analogy with the Ising model on a rectangular lattice with degeneracy of interaction energy to show that the first-order phase transition occurs when the transition temperature T-t is lower than the critical temperature T-c and the second-order phase transition does when T-t = T-c, where T-c only depends on the intermolecular interaction and T-t on the intramolecular one mainly. The pressure effect on this phenomenon is qualitatively explained from temperature- or Delta d (d(100) - d(110,010)) dependence of T-c and T-t.
引用
收藏
页码:3920 / 3925
页数:6
相关论文
共 50 条
  • [1] Microkinetics of the first- and second-order phase transitions
    Stepanov, VA
    PHASE TRANSITIONS, 2005, 78 (7-8) : 607 - 619
  • [2] A mechanical analog of first- and second-order phase transitions
    Fletcher, G
    AMERICAN JOURNAL OF PHYSICS, 1997, 65 (01) : 74 - 81
  • [3] First- and second-order diatomic-to-monatomic phase transitions in a model crystal
    Lacks, DJ
    Kottemann, M
    Yuan, D
    CHEMICAL PHYSICS LETTERS, 2001, 347 (1-3) : 178 - 182
  • [4] Diagnosing first- and second-order phase transitions with probes of quantum chaos
    Huh, Kyoung-Bum
    Ikeda, Kazuki
    Jahnke, Viktor
    Kim, Keun-Young
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [5] Coexisting first- and second-order electronic phase transitions in a correlated oxide
    Post, K. W.
    McLeod, A. S.
    Hepting, M.
    Bluschke, M.
    Wang, Yifan
    Cristiani, G.
    Logvenov, G.
    Charnukha, A.
    Ni, G. X.
    Radhakrishnan, Padma
    Minola, M.
    Pasupathy, A.
    Boris, A., V
    Benckiser, E.
    Dahmen, K. A.
    Carlson, E. W.
    Keimer, B.
    Basov, D. N.
    NATURE PHYSICS, 2018, 14 (10) : 1056 - +
  • [6] First- and second-order phase transitions in the Holstein-Hubbard model
    Koller, W
    Meyer, D
    Ono, Y
    Hewson, AC
    EUROPHYSICS LETTERS, 2004, 66 (04): : 559 - 564
  • [7] Identification of first- and second-order magnetic phase transitions in ferromagnetic perovskites
    Mira, J
    Rivas, J
    Rivadulla, F
    Quintela, MAL
    PHYSICA B-CONDENSED MATTER, 2002, 320 (1-4) : 23 - 25
  • [8] First- and second-order energy stable methods for the modified phase field crystal equation
    Lee, Hyun Geun
    Shin, Jaemin
    Lee, June-Yub
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 321 : 1 - 17
  • [9] Coexisting first- and second-order electronic phase transitions in a correlated oxide
    K. W. Post
    A. S. McLeod
    M. Hepting
    M. Bluschke
    Yifan Wang
    G. Cristiani
    G. Logvenov
    A. Charnukha
    G. X. Ni
    Padma Radhakrishnan
    M. Minola
    A. Pasupathy
    A. V. Boris
    E. Benckiser
    K. A. Dahmen
    E. W. Carlson
    B. Keimer
    D. N. Basov
    Nature Physics, 2018, 14 : 1056 - 1061
  • [10] Exceptional points near first- and second-order quantum phase transitions
    Stransky, Pavel
    Dvorak, Martin
    Cejnar, Pavel
    PHYSICAL REVIEW E, 2018, 97 (01)