Online dual dictionary learning for visual object tracking

被引:2
|
作者
Cheng, Xu [1 ,2 ]
Zhang, Yifeng [3 ]
Zhou, Lin [3 ]
Lu, Guojun [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol, Nanjing 210044, Peoples R China
[3] Southeast Univ, Sch Informat Sci & Engn, Nanjing 210096, Peoples R China
[4] Federat Univ Australia, Sch Engn & Informat Technol, Ballarat, Vic, Australia
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Surveillance; Visual tracking; Sparse representation; Dictionary learning; Appearance update; APPEARANCE MODEL; ROBUST TRACKING;
D O I
10.1007/s12652-020-02799-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse representation method has been widely applied to visual tracking. Most of existing tracking algorithms based on sparse representation exploit the l(0) or l(1)-norm for solving the sparse coefficients. However, it makes the execution of solution very time consuming. In this paper, we propose an effective dual dictionary learning model for visual tracking. The dictionary model is composed of discriminative dictionary and analytic dictionary; they work together to perform the representation and discrimination simultaneously. First, we exploit the object states of the first ten frames of a video to initialize the dual dictionary. In the tracking phase, the dual dictionary model is updated alternatively. Second, the local and global information of the object are integrated into the dual dictionary learning model. Sparse coefficients of the patch are used to encode the local structural information of the object. Furthermore, all the sparse coefficients within one object state form a global object representation. We develop a likelihood function that takes an adaptive threshold into consideration to de-noise the global representation. In addition, the object template is updated via an online scheme to adapt the object appearance changes. The experiments on a number of common benchmark test sets show that our approach is more effective than the existing methods.
引用
收藏
页码:10881 / 10896
页数:16
相关论文
共 50 条
  • [1] Online dual dictionary learning for visual object tracking
    Xu Cheng
    Yifeng Zhang
    Lin Zhou
    Guojun Lu
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12 : 10881 - 10896
  • [2] Visual dictionary and online multi-instance learning based object tracking
    School of Information and Electronics, Beijing Institute of Technology, Beijing
    100081, China
    [J]. Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2 (428-435):
  • [3] Learning structured visual dictionary for object tracking
    Yang, Fan
    Lu, Huchuan
    Yang, Ming-Hsuan
    [J]. IMAGE AND VISION COMPUTING, 2013, 31 (12) : 992 - 999
  • [4] Online Discriminative Dictionary Learning for Visual Tracking
    Yang, Fan
    Jiang, Zhuolin
    Davis, Larry S.
    [J]. 2014 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2014, : 854 - 861
  • [5] Online discriminative dictionary learning for robust object tracking
    Zhou, Tao
    Liu, Fanghui
    Bhaskar, Harish
    Yang, Jie
    Zhang, Huanlong
    Cai, Ping
    [J]. NEUROCOMPUTING, 2018, 275 : 1801 - 1812
  • [6] Online single and multiple analysis dictionary learning-based approach for visual object tracking
    Sitani, Divya
    Subramanyam, A. Venkata
    Majumdar, Angshul
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (01)
  • [7] Robust object tracking via constrained online dictionary learning
    Na Liu
    Hong Huo
    Tao Fang
    [J]. Multimedia Tools and Applications, 2019, 78 : 3689 - 3703
  • [8] Robust object tracking via constrained online dictionary learning
    Liu, Na
    Huo, Hong
    Fang, Tao
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (03) : 3689 - 3703
  • [9] Online learning of multiple detectors for visual object tracking
    Quan, Wei
    Chen, Jin-Xiong
    Yu, Nan-Yang
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (05): : 875 - 882
  • [10] Visual object tracking by correlation filters and online learning
    Zhang, Xin
    Xia, Gui-Song
    Lu, Qikai
    Shen, Weiming
    Zhang, Liangpei
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 140 : 77 - 89