Estimation of the Dynamic States of Synchronous Machines Using an Extended Particle Filter

被引:128
|
作者
Zhou, Ning [1 ]
Meng, Da [1 ]
Lu, Shuai [1 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
Extended Kalman filter (EKF); particle filter; phasor measurement unit (PMU); power system dynamics; state estimation; unscented Kalman filter (UKF); STABILIZING CONTROL; POWER-SYSTEM;
D O I
10.1109/TPWRS.2013.2262236
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, an extended particle filter (PF) is proposed to estimate the dynamic states of a synchronous machine using phasor measurement unit (PMU) data. A PF propagates the mean and covariance of states via Monte Carlo simulation, is easy to implement, and can be directly applied to a nonlinear system with non-Gaussian noise. The proposed extended PF improves robustness of the basic PF through iterative sampling and inflation of particle dispersion. Using Monte Carlo simulations with practical noise and model uncertainty considerations, the extended PF's performance is evaluated and compared with the basic PF, an extended Kalman filter (EKF) and an unscented Kalman filter (UKF). The extended PF results showed high accuracy and robustness against measurement and model noise.
引用
收藏
页码:4152 / 4161
页数:10
相关论文
共 50 条
  • [1] Dynamic State Estimation for Synchronous Machines Based on Interpolation H∞ Extended Kalman Filter
    Ai, Mantong
    Sun, Yonghui
    Lv, Xinxin
    PROCEEDINGS 2018 33RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2018, : 555 - 559
  • [2] HIV Virus States Estimation by Extended Kalman Particle Filter
    Hooshmand, M.
    Sharifian, M.
    Sharifian, H.
    Mahmoudi, J.
    2021 29TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2021, : 193 - 197
  • [3] Rotor Position Estimation for Permanent Magnet Synchronous Machines using Electromotive Force and Anisotropy Using Extended-Kalman-Filter
    Wilcken, Nils
    Grotjahn, Martin
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2023, 87 (02): : 767 - 776
  • [4] Rotor Position Estimation for Permanent Magnet Synchronous Machines using Electromotive Force and Anisotropy Using Extended-Kalman-Filter
    Nils Wilcken
    Martin Grotjahn
    Forschung im Ingenieurwesen, 2023, 87 : 767 - 776
  • [5] An extended Kalman particle filter for power system dynamic state estimation
    Yu, Yang
    Wang, Zhongjie
    Lu, Chengchao
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2018, 37 (06) : 1993 - 2005
  • [6] Estimation of states of nonlinear systems using a particle filter
    Imtiaz, Syed A.
    Roy, Kallol
    Huang, Biao
    Shah, Sirish L.
    Jampana, Phanindra
    2006 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-6, 2006, : 2190 - +
  • [7] Constrained Dynamic Parameter Estimation using the Extended Kalman Filter
    Joukov, Vladimir
    Bonnet, Vincent
    Venture, Gentiane
    Kulic, Dana
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3654 - 3659
  • [8] Dynamic State Estimation for Synchronous Machines Based on Adaptive Ensemble Square Root Kalman Filter
    Nan, Dongliang
    Wang, Weiqing
    Wang, Kaike
    Mahfoud, Rabea Jamil
    Alhelou, Hassan Haes
    Siano, Pierluigi
    APPLIED SCIENCES-BASEL, 2019, 9 (23):
  • [9] Power System Dynamic State Estimation Using Particle Filter
    Emami, Kianoush
    Fernando, Tyrone
    Nener, Brett
    IECON 2014 - 40TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2014, : 248 - 253
  • [10] Extended-Kalman-Filter-Based Field Current Estimation for Brushless Electrically Excited Synchronous Machines Using Stator Current Measurements
    Jiang, Bowen
    Tang, Junfei
    Liu, Yujing
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 5042 - 5054