On the geometry of a Poisson-Lie algebroid

被引:0
|
作者
Popescu, Liviu [1 ]
机构
[1] Univ Craiova, Fac Sci, Dept Appl Math, 13 Al I Cuza St, Craiova 200585, Romania
来源
BSG PROCEEDINGS 19 | 2012年 / 19卷
关键词
Lie algebroids; Poisson manifolds; contravariant connections; MANIFOLDS; CONNECTIONS; HOLONOMY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we continue the study of the linear contravariant connections on Poisson-Lie algebroids. Some properties of the torsion and curvature tensors are investigated and the equations of the geodesic curves are pointed out. The compatibility conditions between the horizontal lift and the canonical Poisson bivector on the prolongation of a Lie algebroid to its dual bundle are given.
引用
收藏
页码:136 / 145
页数:10
相关论文
共 50 条
  • [1] Metric Algebroid and Poisson-Lie T-duality in DFT
    Carow-Watamura, Ursula
    Miura, Kohei
    Watamura, Satoshi
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (02) : 1879 - 1930
  • [2] Geometry of Tangent Poisson-Lie Groups
    Al-Dayel, Ibrahim
    Aloui, Foued
    Deshmukh, Sharief
    [J]. MATHEMATICS, 2023, 11 (01)
  • [3] Metric Algebroid and Poisson-Lie T-duality in DFT
    Ursula Carow-Watamura
    Kohei Miura
    Satoshi Watamura
    [J]. Communications in Mathematical Physics, 2023, 402 : 1879 - 1930
  • [4] POISSON-LIE STRUCTURE ON THE TANGENT BUNDLE OF A POISSON-LIE GROUP, AND POISSON ACTION LIFTING
    Boumaiza, Mohamed
    Zaalani, Nadhem
    [J]. JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2005, 4 : 1 - 18
  • [5] LIE SUPERBIALGEBRAS AND POISSON-LIE SUPERGROUPS
    ANDRUSKIEWITSCH, N
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1993, 63 : 147 - 163
  • [6] Poisson-Lie diffeomorphism groups
    Stoyanov, OS
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2001, 57 (03) : 185 - 223
  • [7] Coadjoint Poisson Actions of Poisson-Lie Groups
    Boris A. Kupershmidt
    Ognyan S. Stoyanov
    [J]. Journal of Nonlinear Mathematical Physics, 1999, 6 : 344 - 354
  • [8] Coadjoint Poisson actions of Poisson-Lie groups
    Kupershmidt, BA
    Stoyanov, OS
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1999, 6 (03) : 344 - 354
  • [9] ON POISSON HOMOGENEOUS SPACES OF POISSON-LIE GROUPS
    DRINFELD, VG
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1993, 95 (02) : 524 - 525
  • [10] Poisson-Lie structures as shifted Poisson structures
    Safronov, Pavel
    [J]. ADVANCES IN MATHEMATICS, 2021, 381