Deep Learning Algorithm of Graph Convolutional Network: A Case of Aqueous Solubility Problems

被引:4
|
作者
Cho, Hyeoncheol [1 ]
Choi, Insung S. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem, Daejeon 34141, South Korea
关键词
Aqueous solubility; Deep learning; Graph convolutional network; HIGH-THROUGHPUT; IN-SILICO; PREDICTION;
D O I
10.1002/bkcs.11730
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Illustration of the graph convolutional network for prediction of aqueous solubility from molecular structure.
引用
收藏
页码:485 / 486
页数:2
相关论文
共 50 条
  • [1] Knowledge graph learning algorithm based on deep convolutional networks
    Zhou, Yuzhong
    Lin, Zhengping
    Lin, Jie
    Yang, Yuliang
    Shi, Jiahao
    [J]. INTELLIGENT SYSTEMS WITH APPLICATIONS, 2024, 22
  • [2] Deep learning in pharmacy: The prediction of aqueous solubility based on deep belief network
    Li H.
    Yu L.
    Tian S.
    Li L.
    Wang M.
    Lu X.
    [J]. Automatic Control and Computer Sciences, 2017, 51 (2) : 97 - 107
  • [3] Geometric Multimodal Deep Learning With Multiscaled Graph Wavelet Convolutional Network
    Behmanesh, Maysam
    Adibi, Peyman
    Ehsani, Sayyed Mohammad Saeed
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) : 6991 - 7005
  • [4] Robust graph learning with graph convolutional network
    Wan, Yingying
    Yuan, Changan
    Zhan, Mengmeng
    Chen, Long
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (03)
  • [5] Deep Learning Model for Point Cloud Classification Based on Graph Convolutional Network
    Wang Xujiao
    Ma Jie
    Wang Nannan
    Ma Pengfei
    Yang Lichaung
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (21)
  • [6] A deep graph convolutional neural network architecture for graph classification
    Zhou, Yuchen
    Huo, Hongtao
    Hou, Zhiwen
    Bu, Fanliang
    [J]. PLOS ONE, 2023, 18 (03):
  • [7] A deep graph convolutional neural network architecture for graph classification
    Zhou, Yuchen
    Huo, Hongtao
    Hou, Zhiwen
    Bu, Fanliang
    [J]. PLOS BIOLOGY, 2023, 21 (03)
  • [8] Production Scheduling based on Deep Reinforcement Learning using Graph Convolutional Neural Network
    Seito, Takanari
    Munakata, Satoshi
    [J]. ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2020, : 766 - 772
  • [9] Spatiotemporal Deep-Learning Model With Graph Convolutional Network for Well Logs Prediction
    Feng, Shuo
    Li, Xuegui
    Zeng, Fang
    Hu, Zhongrui
    Sun, Yuhang
    Wang, Zepeng
    Duan, Hanxu
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [10] Incomplete Graph Learning via Partial Graph Convolutional Network
    Zhang, Ziyan
    Jiang, Bo
    Tang, Jin
    Tang, Jinhui
    Luo, Bin
    [J]. IEEE Transactions on Artificial Intelligence, 2024, 5 (09): : 4315 - 4321