Postnatal functional inactivation of the entorhinal cortex or ventral subiculum has different consequences for latent inhibition-related striatal dopaminergic responses in adult rats
被引:20
|
作者:
Meyer, F.
论文数: 0引用数: 0
h-index: 0
机构:INSERM, U666, F-67085 Strasbourg, France
Meyer, F.
Peterschmitt, Y.
论文数: 0引用数: 0
h-index: 0
机构:INSERM, U666, F-67085 Strasbourg, France
Peterschmitt, Y.
Louilot, A.
论文数: 0引用数: 0
h-index: 0
机构:
INSERM, U666, F-67085 Strasbourg, FranceINSERM, U666, F-67085 Strasbourg, France
Latent inhibition has been found to be disrupted in patients with acute schizophrenia. Striatal dopaminergic dysregulation is commonly acknowledged in schizophrenia. This disease may be consecutive to a functional disconnection between integrative regions, stemming from neurodevelopmental failures. Various anomalies suggesting early abnormal brain development have been described in the entorhinal cortex (ENT) and ventral subiculum (SUB) of patients. This study examines the consequences of a neonatal transitory blockade of the left ENT or left SUB for latent inhibition-related dopamine responses in the anterior part of the dorsal striatum using in-vivo voltammetry in freely moving adult rats. Reversible inactivation of both structures in different animals was achieved by local microinjection of tetrodotoxin (TTX) at postnatal day 8. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the functional neonatal disconnection of the ENT or SUB caused the behavioural latent inhibition expression in pre-exposed (PE)-TTX-conditioned adult rats to disappear. After postnatal inactivation of the SUB, PE-TTX-conditioned rats displayed a reversal of the latent inhibition-related striatal dopamine responses, whereas after neonatal blockade of the ENT, dopamine changes in PE-TTX-conditioned rats monitored in the anterior striatum were between those observed in PE-phosphate-buffered-saline-conditioned and non-PE-TTX-conditioned animals. These data suggest that neonatal functional inactivation of the SUB disrupts latent inhibition-related striatal dopamine responses in adult animals more than that of the ENT. They may help improve understanding of the pathophysiology of schizophrenia.
机构:
Univ Strasbourg, Fac Med, INSERM U 1114, FMTS, Strasbourg, France
Higher Inst Biotechnol Monastir, Lab Genet Biodivers & Valorizat Bioresources, Monastir, TunisiaUniv Strasbourg, Fac Med, INSERM U 1114, FMTS, Strasbourg, France
Saoud, Hana
De Beus, Duco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Fac Med, INSERM U 1114, FMTS, Strasbourg, France
Charles River Labs Int Inc, Inc Discovery Res Serv, Groningen, NetherlandsUniv Strasbourg, Fac Med, INSERM U 1114, FMTS, Strasbourg, France
De Beus, Duco
Eybrard, Severine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Fac Med, INSERM U 1114, FMTS, Strasbourg, FranceUniv Strasbourg, Fac Med, INSERM U 1114, FMTS, Strasbourg, France
Eybrard, Severine
Louilot, Alain
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Fac Med, INSERM U 1114, FMTS, Strasbourg, FranceUniv Strasbourg, Fac Med, INSERM U 1114, FMTS, Strasbourg, France