Dynamical origins for non-Gaussian vorticity distributions in turbulent flows

被引:37
|
作者
Wilczek, Michael [1 ]
Friedrich, Rudolf [1 ]
机构
[1] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
关键词
D O I
10.1103/PhysRevE.80.016316
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present results on the connection between the vorticity equation and the shape and evolution of the single-point vorticity probability density function. The statistical framework for these observations is based on the classical hierarchy of evolution equations for the probability density functions by Lundgren, Novikov, and Monin combined with conditional averaging of the unclosed terms. The numerical evaluation of these conditional averages provides insights into the intimate relation of dynamical effects such as vortex stretching and vorticity diffusion and non-Gaussian vorticity statistics.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Dynamical origins for non-Gaussian vorticity distributions in turbulent flows (vol 80, 016316, 2009)
    Wilczek, Michael
    Friedrich, Rudolf
    [J]. PHYSICAL REVIEW E, 2009, 80 (02):
  • [2] NON-GAUSSIAN DISTRIBUTIONS IN EXTENDED DYNAMICAL-SYSTEMS
    BHAGAVATULA, R
    JAYAPRAKASH, C
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (22) : 3657 - 3660
  • [3] Non-Gaussian statistics of a passive scalar in turbulent flows
    Mi, J
    Antonia, RA
    Nathan, GJ
    Luxton, RE
    [J]. TWENTY-SEVENTH SYMPOSIUM (INTERNATIONAL) ON COMBUSTION, VOLS 1 AND 2, 1998, : 989 - 995
  • [4] Non-Gaussian distributions
    Mastrangelo, M
    Mastrangelo, V
    Teuler, JM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1999, 101 (2-3) : 99 - 124
  • [5] Non-gaussian distributions
    Mastrangelo, M
    Mastrangelo, V
    Teuler, JM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2000, 109 (2-3) : 225 - 247
  • [6] On the non-Gaussian nature of ionospheric vorticity
    Chisham, G.
    Freeman, M. P.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [7] A Lagrangian stochastic model for particle trajectories in non-Gaussian turbulent flows
    Reynolds, AM
    [J]. FLUID DYNAMICS RESEARCH, 1997, 19 (05) : 277 - 288
  • [8] Blending Modified Gaussian Closure and Non-Gaussian Reduced Subspace Methods for Turbulent Dynamical Systems
    Themistoklis P. Sapsis
    Andrew J. Majda
    [J]. Journal of Nonlinear Science, 2013, 23 : 1039 - 1071
  • [9] Blending Modified Gaussian Closure and Non-Gaussian Reduced Subspace Methods for Turbulent Dynamical Systems
    Sapsis, Themistoklis P.
    Majda, Andrew J.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (06) : 1039 - 1071
  • [10] Non-Gaussian diffusion of mixed origins
    Lanoiselee, Yann
    Grebenkov, Denis S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (30)