StyleLight: HDR Panorama Generation for Lighting Estimation and Editing

被引:13
|
作者
Wang, Guangcong [1 ]
Yang, Yinuo [1 ]
Loy, Chen Change [1 ]
Liu, Ziwei [1 ]
机构
[1] Nanyang Technol Univ, S Lab, Singapore, Singapore
来源
关键词
Lighting estimation and editing; Panorama generation; ILLUMINATION;
D O I
10.1007/978-3-031-19784-0_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new lighting estimation and editing framework to generate high-dynamic-range (HDR) indoor panorama lighting from a single limited field-of-view (LFOV) image captured by low-dynamic-range (LDR) cameras. Existing lighting estimation methods either directly regress lighting representation parameters or decompose this problem into LFOV-to-panorama and LDR-to-HDR lighting generation sub-tasks. However, due to the partial observation, the highdynamic-range lighting, and the intrinsic ambiguity of a scene, lighting estimation remains a challenging task. To tackle this problem, we propose a coupled dual-StyleGAN panorama synthesis network (StyleLight) that integrates LDR and HDR panorama synthesis into a unified framework. The LDR and HDR panorama synthesis share a similar generator but have separate discriminators. During inference, given an LDR LFOV image, we propose a focal-masked GAN inversion method to find its latent code by the LDR panorama synthesis branch and then synthesize the HDR panorama by the HDR panorama synthesis branch. StyleLight takes LFOV-to-panorama and LDR-to-HDR lighting generation into a unified framework and thus greatly improves lighting estimation. Extensive experiments demonstrate that our framework achieves superior performance over state-of-the-art methods on indoor lighting estimation. Notably, StyleLight also enables intuitive lighting editing on indoor HDR panoramas, which is suitable for real-world applications. Code is available at https://style-light.github.io/.
引用
收藏
页码:477 / 492
页数:16
相关论文
共 50 条
  • [1] Spatiotemporally Consistent HDR Indoor Lighting Estimation
    Li, Zhengqin
    Yu, Li
    Okunev, Mikhail
    Chandraker, Manmohan
    Dong, Zhao
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (03):
  • [2] EverLight: Indoor-Outdoor Editable HDR Lighting Estimation
    Dastjerdi, Mohammad Reza Karimi
    Eisenmann, Jonathan
    Hold-Geoffroy, Yannick
    Lalonde, Jean-Francois
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 7386 - 7395
  • [3] Research on Panorama Generation Based on Homography Estimation
    Ying Jie
    Song Yanbin
    Lu Linli
    APPLIED MATERIALS AND TECHNOLOGIES FOR MODERN MANUFACTURING, PTS 1-4, 2013, 423-426 : 2518 - 2521
  • [4] CRF ESTIMATION BASED HDR IMAGE GENERATION METHOD
    Huo, Yongqing
    Zhang, Xudong
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,
  • [5] Real-Time HDR Panorama Video
    Kellerer, Lorenz
    Gaddam, Vamsidhar Reddy
    Langseth, Ragnar
    Stensland, Haakon
    Griwodz, Carsten
    Johansen, Dag
    Halvorsen, Paal
    PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 1205 - 1208
  • [6] An HDR brightness correction algorithm for panorama images
    Zhang, WX
    Zhou, BF
    PROCEEDINGS OF THE FOURTH IASTED INTERNATIONAL CONFERENCE ON VISUALIZATION, IMAGING, AND IMAGE PROCESSING, 2004, : 608 - 612
  • [7] Text2Light. Zero-Shot Text-Driven HDR Panorama Generation
    Chen, Zhaoxi
    Wang, Guangcong
    Liu, Ziwei
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (06):
  • [8] Luminance Attentive Networks for HDR Image and Panorama Reconstruction
    Yu, Hanning
    Liu, Wentao
    Long, Chengjiang
    Dong, Bo
    Zou, Qin
    Xiao, Chunxia
    COMPUTER GRAPHICS FORUM, 2021, 40 (07) : 181 - 192
  • [9] Learning HDR illumination from LDR panorama images
    Jin, Xin
    Zhu, Xingfan
    Li, Xinxin
    Zhang, Kejun
    Li, Xiaodong
    Zhang, Xiaokun
    Zhou, Quan
    Xie, Shujiang
    Fang, Xi
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 91
  • [10] Interactive HDR lighting of dynamic participating media
    Navarro, Fernando
    Gutierrez, Diego
    Seron, Francisco J.
    VISUAL COMPUTER, 2009, 25 (04): : 339 - 347