Filling gaps of cartographic polylines by using an encoder-decoder model

被引:3
|
作者
Yu, Wenhao [1 ,2 ]
Chen, Yujie [1 ]
机构
[1] China Univ Geosci, Sch Geog & Informat Engn, Wuhan, Peoples R China
[2] China Univ Geosci, Natl Engn Res Ctr Geog Informat Syst, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Filling gap; cartographic polylines; spatial data quality; encoder-decoder model;
D O I
10.1080/13658816.2022.2055036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Geospatial studies must address spatial data quality, especially in data-driven research. An essential concern is how to fill spatial data gaps (missing data), such as for cartographic polylines. Recent advances in deep learning have shown promise in filling holes in images with semantically plausible and context-aware details. In this paper, we propose an effective framework for vector-structured polyline completion using a generative model. The model is trained to generate the contents of missing polylines of different sizes and shapes conditioned on the contexts. Specifically, the generator can compute the content of the entire polyline sample globally and produce a plausible prediction for local gaps. The proposed model was applied to contour data for validation. The experiments generated gaps of random sizes at random locations along with the polyline samples. Qualitative and quantitative evaluations show that our model can fill missing points with high perceptual quality and adaptively handle a range of gaps. In addition to the simulation experiment, two case studies with map vectorization and trajectory filling illustrate the application prospects of our model.
引用
收藏
页码:2296 / 2321
页数:26
相关论文
共 50 条
  • [1] An Encoder-Decoder Approach to the Paradigm Cell Filling Problem
    Silfverberg, Miikka
    Hulden, Mans
    [J]. 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 2883 - 2889
  • [2] Automated tongue segmentation using deep encoder-decoder model
    Worapan Kusakunniran
    Punyanuch Borwarnginn
    Thanandon Imaromkul
    Kittinun Aukkapinyo
    Kittikhun Thongkanchorn
    Disathon Wattanadhirach
    Sophon Mongkolluksamee
    Ratchainant Thammasudjarit
    Panrasee Ritthipravat
    Pimchanok Tuakta
    Paitoon Benjapornlert
    [J]. Multimedia Tools and Applications, 2023, 82 : 37661 - 37686
  • [3] Learning Depth for Scene Reconstruction Using an Encoder-Decoder Model
    Tu, Xiaohan
    Xu, Cheng
    Liu, Siping
    Xie, Guoqi
    Huang, Jing
    Li, Renfa
    Yuan, Junsong
    [J]. IEEE ACCESS, 2020, 8 : 89300 - 89317
  • [4] Automated tongue segmentation using deep encoder-decoder model
    Kusakunniran, Worapan
    Borwarnginn, Punyanuch
    Imaromkul, Thanandon
    Aukkapinyo, Kittinun
    Thongkanchorn, Kittikhun
    Wattanadhirach, Disathon
    Mongkolluksamee, Sophon
    Thammasudjarit, Ratchainant
    Ritthipravat, Panrasee
    Tuakta, Pimchanok
    Benjapornlert, Paitoon
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (24) : 37661 - 37686
  • [5] Correlation Encoder-Decoder Model for Text Generation
    Zhang, Xu
    Li, Yifeng
    Peng, Xueping
    Qiao, Xinxiao
    Zhang, Hui
    Lu, Wenpeng
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] A Normalized Encoder-Decoder Model for Abstractive Summarization Using Focal Loss
    Shi, Yunsheng
    Meng, Jun
    Wang, Jian
    Lin, Hongfei
    Li, Yumeng
    [J]. NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2018, PT II, 2018, 11109 : 383 - 392
  • [7] On Mining Conditions using Encoder-decoder Networks
    Gallego, Fernando O.
    Corchuelo, Rafael
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 624 - 630
  • [8] Labeled Data Generation with Encoder-decoder LSTM for Semantic Slot Filling
    Kurata, Gakuto
    Xiang, Bing
    Zhou, Bowen
    [J]. 17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 725 - 729
  • [9] Machine translation considering context informaiton using Encoder-Decoder model
    Takano, Tetsuto
    Yamane, Satoshi
    [J]. 2018 IEEE 42ND ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2018, : 793 - 794
  • [10] Encoder-Decoder Model for Automatic Video Captioning Using Yolo Algorithm
    Alkalouti, Hanan Nasser
    Al Masre, Mayada Ahmed
    [J]. 2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 718 - 721