Computer simulation of hydrogen proton exchange membrane and direct methanol fuel cells

被引:8
|
作者
Cheng, C. H. [1 ]
Fei, K. [1 ]
Hong, C. W. [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Power Mech Engn, Hsinchu 30013, Taiwan
关键词
PEMFC; DMFC; transport phenomena;
D O I
10.1016/j.compchemeng.2006.06.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes the computer simulation of electrochemical flow phenomena to predict the performance of proton exchange membrane fuel cells (PEMFCs), which include hydrogen and direct methanol fuel cells (DMFCs). To study the transport phenomena inside the low temperature fuel cells. the mass. the momentum, and the species equations are required. Darcy laws were employed to simplify the momentum equations in the porous diffusion layers and also to linearize the conservation equation set. That reduces the computational load significantly without losing the generality of the flow field. Performance simulation results were validated with some published experimental data. The comparison shows satisfactory agreement between them. This virtual performance test bench plays an important role in the prototype fuel cell design. The computer aided design tool is able to provide detailed information on the transport phenomena of the fuel cells, in which the flow visualization is not easy to carry out by experiments. (c) 2006 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:247 / 257
页数:11
相关论文
共 50 条
  • [1] Hydrogen and methanol proton exchange membrane fuel cells
    Schmidt, VM
    Stimming, U
    HYDROGEN ENERGY PROGRESS XI, VOLS 1-3, 1996, : 1717 - 1725
  • [2] BLEND MEMBRANES FOR DIRECT METHANOL AND PROTON EXCHANGE MEMBRANE FUEL CELLS
    Perumal Bhavani
    Dharmalingam Sangeetha
    Chinese Journal of Polymer Science, 2012, 30 (04) : 548 - 560
  • [3] Blend membranes for direct methanol and proton exchange membrane fuel cells
    Bhavani, Perumal
    Sangeetha, Dharmalingam
    CHINESE JOURNAL OF POLYMER SCIENCE, 2012, 30 (04) : 548 - 560
  • [4] Blend membranes for direct methanol and proton exchange membrane fuel cells
    Perumal Bhavani
    Dharmalingam Sangeetha
    Chinese Journal of Polymer Science, 2012, 30 : 548 - 560
  • [5] Heat and mass transfer and two phase flow in hydrogen proton exchange membrane fuel cells and direct methanol fuel cells
    Guo, H
    Ma, CF
    Wang, MH
    Yu, J
    Liu, X
    Ye, F
    Wang, CY
    FUEL CELL SCIENCE, ENGINEERING AND TECHNOLOGY, 2003, : 471 - 476
  • [6] Biocomposite proton-exchange membrane electrolytes for direct methanol fuel cells
    Suganthi, S.
    Mohanapriya, S.
    Raj, V.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (25)
  • [7] Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells
    Neelakandan, S.
    Kanagaraj, P.
    Sabarathinam, R. M.
    Nagendran, A.
    APPLIED SURFACE SCIENCE, 2015, 359 : 272 - 279
  • [8] Simulation modeling of proton exchange membrane fuel cells
    Belyaev, P. V.
    Mischenko, V. S.
    Podberezkin, D. A.
    Em, R. A.
    2016 DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES (DYNAMICS), 2016,
  • [9] Platinum utilization in proton exchange membrane fuel cell and direct methanol fuel cell
    Bandapati, Madhavi
    Goel, Sanket
    Krishnamurthy, Balaji
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND ENGINEERING, 2019, 9 (04): : 281 - 310
  • [10] Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane
    Li, Jing
    Cai, Weiwei
    Ma, Liying
    Zhang, Yunfeng
    Chen, Zhangxian
    Cheng, Hansong
    CHEMICAL COMMUNICATIONS, 2015, 51 (30) : 6556 - 6559