共 50 条
New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks
被引:14
|作者:
Sasaki, Miyuki
[1
]
Sanada, Yukihisa
[1
]
Katengeza, Estiner W.
[2
]
Yamamoto, Akio
[3
]
机构:
[1] Japan Atom Energy Agcy, Collaborat Labs Adv Decommissioning Sci, 45-169 Sukakeba, Fukushima 9750036, Japan
[2] Univ Tokyo, Dept Environm Syst, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138654, Japan
[3] Nagoya Univ, Dept Appl Energy, Grad Sch Engn, C2-4 Furoucho, Nagoya, Aichi 4648603, Japan
关键词:
D O I:
10.1038/s41598-021-81546-4
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
This study proposes a new method of visualizing the ambient dose rate distribution using artificial neural networks (ANNs) from airborne radiation monitoring results. The method was applied to the results of the airborne radiation monitoring which was conducted around the Fukushima Daiichi Nuclear Power Plant by an unmanned aerial vehicle. Much of the survey data obtained in the past were used as the training data for building a network. The number of training cases was related to the error between the ground and converted values by the ANN. The quantitative evaluation index (the root-mean-square error) between the ANN-converted value and the ground-based survey result converged at 200 training cases. This number of training case was considered a rough criterion of the required number of training cases. The reliability of the ANN method was evaluated by comparison with the ground-based survey data. The dose rate map created by the ANNs method reproduced ground-based survey results better than traditional methods.
引用
收藏
页数:11
相关论文