Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network

被引:133
|
作者
Jiang, Hongkai [1 ]
Li, Xingqiu [1 ]
Shao, Haidong [1 ]
Zhao, Ke [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
intelligent fault diagnosis; rolling bearing; deep learning; improved deep recurrent neural network; adaptive learning rate; ROTATING MACHINERY; EEMD; ALGORITHM; ENTROPY; HEALTH; PACKET;
D O I
10.1088/1361-6501/aab945
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traditional intelligent fault diagnosis methods for rolling bearings heavily depend on manual feature extraction and feature selection. For this purpose, an intelligent deep learning method, named the improved deep recurrent neural network (DRNN), is proposed in this paper. Firstly, frequency spectrum sequences are used as inputs to reduce the input size and ensure good robustness. Secondly, DRNN is constructed by the stacks of the recurrent hidden layer to automatically extract the features from the input spectrum sequences. Thirdly, an adaptive learning rate is adopted to improve the training performance of the constructed DRNN. The proposed method is verified with experimental rolling bearing data, and the results confirm that the proposed method is more effective than traditional intelligent fault diagnosis methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fault diagnosis of rolling bearings with recurrent neural network based autoencoders
    Liu, Han
    Zhou, Jianzhong
    Zheng, Yang
    Jiang, Wei
    Zhang, Yuncheng
    [J]. ISA TRANSACTIONS, 2018, 77 : 167 - 178
  • [2] Intelligent fault diagnosis of rolling bearings using a semi-supervised convolutional neural network
    Wu, Yaochun
    Zhao, Rongzhen
    Jin, Wuyin
    He, Tianjing
    Ma, Sencai
    Shi, Mingkuan
    [J]. APPLIED INTELLIGENCE, 2021, 51 (04) : 2144 - 2160
  • [3] Intelligent fault diagnosis of rolling bearings using a semi-supervised convolutional neural network
    Yaochun Wu
    Rongzhen Zhao
    Wuyin Jin
    Tianjing He
    Sencai Ma
    Mingkuan Shi
    [J]. Applied Intelligence, 2021, 51 : 2144 - 2160
  • [4] Application of a new one-dimensional deep convolutional neural network for intelligent fault diagnosis of rolling bearings
    Xie, Shenglong
    Ren, Guoying
    Zhu, Junjiang
    [J]. SCIENCE PROGRESS, 2020, 103 (03)
  • [5] Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
    Liu, Han
    Zhou, Jianzhong
    Xu, Yanhe
    Zheng, Yang
    Peng, Xuanlin
    Jiang, Wei
    [J]. NEUROCOMPUTING, 2018, 315 : 412 - 424
  • [6] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong, Wen-Feng
    Chen, Hui
    Zhang, Ze-Hui
    Zhang, Mei-Ling
    Guan, Cong
    Wang, Xin
    [J]. Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [7] Fault diagnosis of aerospace rolling bearings based on improved wavelet-neural network
    Jin Xiangyang
    Li Zhang
    Yu Guangbin
    [J]. PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 5, 2007, : 525 - +
  • [8] A Robust Fault Diagnosis Method for Rolling Bearings Based on Deep Convolutional Neural Network
    Li, Zhenxiang
    Zheng, Taisheng
    Yang, Wang
    Fu, Hongyong
    Wu, Wenbo
    [J]. 2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [9] EnvelopeNet: A robust convolutional neural network with optimal kernels for intelligent fault diagnosis of rolling bearings
    Tang, Lv
    Xuan, Jianping
    Shi, Tielin
    Zhang, Qing
    [J]. MEASUREMENT, 2021, 180
  • [10] Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network
    Unal, Muhammet
    Onat, Mustafa
    Demetgul, Mustafa
    Kucuk, Haluk
    [J]. MEASUREMENT, 2014, 58 : 187 - 196