A graphical null model for scaling biodiversity-ecosystem functioning relationships

被引:14
|
作者
Barry, Kathryn E. [1 ,2 ,3 ]
Pinter, Gabriella A. [4 ]
Strini, Joseph W. [4 ]
Yang, Karrisa [4 ]
Lauko, Istvan G. [4 ]
Schnitzer, Stefan A. [5 ]
Clark, Adam T. [1 ,6 ,7 ]
Cowles, Jane [8 ]
Mori, Akira S. [9 ]
Williams, Laura [10 ]
Reich, Peter B. [10 ,11 ]
Wright, Alexandra J. [12 ]
机构
[1] German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany
[2] Univ Leipzig, Inst Biol, Systemat Bot & Funct Biodivers, Leipzig, Germany
[3] Univ Utrecht, Dept Biol, Ecol & Biodivers Grp, Utrecht, Netherlands
[4] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[5] Marquette Univ, Dept Biol Sci, Milwaukee, WI 53233 USA
[6] UFZ Helmholtz Ctr Environm Res, Dept Physiol Divers, Leipzig, Germany
[7] Karl Franzens Univ Graz, Inst Biol, Graz, Austria
[8] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA
[9] Yokohama Natl Univ, Grad Sch Environm & Informat Sci, Yokohama, Kanagawa, Japan
[10] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA
[11] Western Sydney Univ, Hawkesbury Inst Environm, Penrith, NSW, Australia
[12] Calif State Univ Los Angeles, Dept Sci Biol, Los Angeles, CA 90032 USA
基金
美国国家科学基金会;
关键词
grasslands; productivity; species richness-area relationship; statistical scaling; upscaling; SPECIES RICHNESS; PLANT DIVERSITY; PRODUCTIVITY; TIME; INCREASES; SAVANNA;
D O I
10.1111/1365-2745.13578
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
1. Global biodiversity is declining at rates faster than at any other point in human history. Experimental manipulations at small spatial scales have demonstrated that communities with fewer species consistently produce less biomass than higher diversity communities. Understanding the consequences of the global extinction crisis for ecosystem functioning requires understanding how local experimental results are likely to change with increasing spatial and temporal scales and from experiments to naturally assembled systems. 2. Scaling across time and space in a changing world requires baseline predictions. Here, we provide a graphical null model for area scaling of biodiversity-ecosystem functioning relationships using observed macroecological patterns: the species-area curve and the biomass-area curve. We use species-area and biomass-area curves to predict how species richness-biomass relationships are likely to change with increasing sampling extent. We then validate these predictions with data from two naturally assembled ecosystems: a Minnesota savanna and a Panamanian tropical dry forest. 3. Our graphical null model predicts that biodiversity-ecosystem functioning relationships are scale-dependent. However, we note two important caveats. First, our results indicate an apparent contradiction between predictions based on measurements in biodiversity-ecosystem functioning experiments and from scaling theory. When ecosystem functioning is measured as per unit area (e.g. biomass per m(2)), as is common in biodiversity-ecosystem functioning experiments, the slope of the biodiversity ecosystem functioning relationship should decrease with increasing scale. Alternatively, when ecosystem functioning is not measured per unit area (e.g. summed total biomass), as is common in scaling studies, the slope of the biodiversity-ecosystem functioning relationship should increase with increasing spatial scale. Second, the underlying macroecological patterns of biodiversity experiments are predictably different from some naturally assembled systems. These differences between the underlying patterns of experiments and naturally assembled systems may enable us to better understand when patterns from biodiversity-ecosystem functioning experiments will be valid in naturally assembled systems. 4. Synthesis. This paper provides a simple graphical null model that can be extended to any relationship between biodiversity and any ecosystem functioning across space or time. Furthermore, these predictions provide crucial insights into how and when we may be able to extend results from small-scale biodiversity experiments to naturally assembled regional and global ecosystems where biodiversity is changing.
引用
收藏
页码:1549 / 1560
页数:12
相关论文
共 50 条
  • [1] Scaling-up biodiversity-ecosystem functioning research
    Gonzalez, Andrew
    Germain, Rachel M.
    Srivastava, Diane S.
    Filotas, Elise
    Dee, Laura E.
    Gravel, Dominique
    Thompson, Patrick L.
    Isbell, Forest
    Wang, Shaopeng
    Kefi, Sonia
    Montoya, Jose
    Zelnik, Yuval R.
    Loreau, Michel
    [J]. ECOLOGY LETTERS, 2020, 23 (04) : 757 - 776
  • [2] Scaling up biodiversity-ecosystem functioning relationships: the role of environmental heterogeneity in space and time
    Thompson, Patrick L.
    Kefi, Sonia
    Zelnik, Yuval R.
    Dee, Laura E.
    Wang, Shaopeng
    de Mazancourt, Claire
    Loreau, Michel
    Gonzalez, Andrew
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2021, 288 (1946)
  • [3] Food-web constraints on biodiversity-ecosystem functioning relationships
    Thébault, E
    Loreau, M
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (25) : 14949 - 14954
  • [4] Community assembly effects shape the biodiversity-ecosystem functioning relationships
    Jaillard, Benoit
    Rapaport, Alain
    Harmand, Jerome
    Brauman, Alain
    Nunan, Naoise
    [J]. FUNCTIONAL ECOLOGY, 2014, 28 (06) : 1523 - 1533
  • [5] Stressor-induced biodiversity gradients: revisiting biodiversity-ecosystem functioning relationships
    Mensens, Christoph
    De Laender, Frederik
    Janssen, Colin R.
    Sabbe, Koen
    De Troch, Marleen
    [J]. OIKOS, 2015, 124 (06) : 677 - 684
  • [6] Contrasting biodiversity-ecosystem functioning relationships in phylogenetic and functional diversity
    Steudel, Bastian
    Hallmann, Christine
    Lorenz, Maike
    Abrahamczyk, Stefan
    Prinz, Kathleen
    Herrfurth, Cornelia
    Feussner, Ivo
    Martini, Johannes W. R.
    Kessler, Michael
    [J]. NEW PHYTOLOGIST, 2016, 212 (02) : 409 - 420
  • [7] How community adaptation affects biodiversity-ecosystem functioning relationships
    Aubree, Flora
    David, Patrice
    Jarne, Philippe
    Loreau, Michel
    Mouquet, Nicolas
    Calcagno, Vincent
    [J]. ECOLOGY LETTERS, 2020, 23 (08) : 1263 - 1275
  • [8] A Linear Model Method for Biodiversity-Ecosystem Functioning Experiments
    Bell, Thomas
    Lilley, Andrew K.
    Hector, Andy
    Schmid, Bernhard
    King, Lindsay
    Newman, Jonathan A.
    [J]. AMERICAN NATURALIST, 2009, 174 (06): : 836 - 849
  • [9] Distributional (In)Congruence of Biodiversity-Ecosystem Functioning
    Mulder, Christian
    Boit, Alice
    Mori, Shigeta
    Vonk, J. Arie
    Dyer, Scott D.
    Faggiano, Leslie
    Geisen, Stefan
    Gonzalez, Angelica L.
    Kaspari, Michael
    Lavorel, Sandra
    Marquet, Pablo A.
    Rossberg, Axel G.
    Sterner, Robert W.
    Voigt, Winfried
    Wall, Diana H.
    [J]. ADVANCES IN ECOLOGICAL RESEARCH, VOL 46: GLOBAL CHANGE IN MULTISPECIES SYSTEMS, PT 1, 2012, 46 : 1 - 88
  • [10] Seafloor heterogeneity influences the biodiversity-ecosystem functioning relationships in the deep sea
    Zeppilli, Daniela
    Pusceddu, Antonio
    Trincardi, Fabio
    Danovaro, Roberto
    [J]. SCIENTIFIC REPORTS, 2016, 6