Network traffic analysis using immunological and evolutionary paradigms

被引:0
|
作者
Ostaszewski, Marek [1 ]
Seredynski, Franciszek [1 ,2 ,3 ]
Bouvry, Pascal [4 ]
机构
[1] Univ Podlasie, Inst Comp Sci, Sienkiewicza 51, PL-08110 Siedlce, Poland
[2] Polish Japanese Inst Informat Technol, PL-02008 Warsaw, Poland
[3] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
[4] Luxembourg Univ, Fac Sci Technol & Commun, L-1359 Luxembourg, Luxembourg
来源
INTELLIGENT INFORMATION PROCESSING AND WEB MINING, PROCEEDINGS | 2006年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper presents an approach to anomaly detection problem based on self-nonself space paradigm. Hyperrectangular structure as description for self and nonself elements is proposed. Niching genetic algorithm is used for generation of detector set. Results of conducted experiments show a high quality of intrusion detection which outperforms the quality of recently proposed approach based on hypersphere representation of self-space.
引用
收藏
页码:359 / +
页数:2
相关论文
共 50 条
  • [1] Traffic Accident Analysis Using Machine Learning Paradigms
    Chong, Miao
    Abraham, Ajith
    Paprzycki, Marcin
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2005, 29 (01): : 89 - 98
  • [2] Infrequent Pattern Detection for Reliable Network Traffic Analysis Using Robust Evolutionary Computation
    Rashid, A. N. M. Bazlur
    Ahmed, Mohiuddin
    Pathan, Al-Sakib Khan
    SENSORS, 2021, 21 (09)
  • [3] Traffic prediction using a self-adjusted evolutionary neural network
    Shiva Rahimipour
    Rayehe Moeinfar
    S. Mehdi Hashemi
    Journal of Modern Transportation, 2019, 27 : 306 - 316
  • [4] Traffic prediction using a self-adjusted evolutionary neural network
    Rahimipour, Shiva
    Moeinfar, Rayehe
    Hashemi, S. Mehdi
    JOURNAL OF MODERN TRANSPORTATION, 2019, 27 (04): : 306 - 316
  • [5] Traffic prediction using a self-adjusted evolutionary neural network
    Shiva Rahimipour
    Rayehe Moeinfar
    Mehdi Hashemi
    Journal of Modern Transportation, 2019, 27 (04) : 306 - 316
  • [6] Network traffic analysis using clustering ants
    Ekola, T
    Laurikkala, M
    Lehto, T
    Koivisto, H
    Soft Computing with Industrial Applications, Vol 17, 2004, 17 : 275 - 280
  • [7] Brazilian Air Traffic Network Analysis Using Social Network Metrics
    Anbarasi, L. Jani
    Jawahar, Malathy
    Mukherjee, Bipasa
    Narendra, Modigari
    Rahimi, Masoumeh
    Gandomi, Amir H.
    2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 264 - 269
  • [8] Analysis of Traffic Performance on Network Slicing Using Complex Network Theory
    Guan, Wanqing
    Zhang, Haijun
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 15188 - 15199
  • [9] Network Traffic Monitoring and Analysis using Packet Sniffer
    Siswanto, Apri
    Syukur, Abdul
    Kadir, Evizal Abdul
    Suratin
    2019 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGIES AND NETWORKING (COMMNET), 2019, : 14 - 17
  • [10] Network Traffic Analysis and Packet Sniffing Using UDP
    Islam, Md Ruhul
    Koirala, Tawal K.
    Khatun, Ferdousi
    ADVANCES IN COMMUNICATION, DEVICES AND NETWORKING, 2018, 462 : 907 - 914