IR-UV spectroscopy of jet-cooled 1-indanol: Restriction of the conformational space by hydration

被引:11
|
作者
Bouchet, Aude [1 ]
Altnoeder, Jonas [3 ]
Broquier, Michel [1 ,2 ]
Zehnacker, Anne [1 ,2 ]
机构
[1] Univ Paris 11, CNRS, ISMO, UMR8214, F-91405 Orsay, France
[2] Univ Paris 11, CLUPS, LUMAT FR 2764, F-91405 Orsay, France
[3] Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany
关键词
Hydrogen bonding; Micro-hydration; Indanol; REMPI; IR-UV depletion spectroscopy; Quantum chemical calculations; LASER-INDUCED FLUORESCENCE; HYDROGEN-BONDED BRIDGES; POTENTIAL-ENERGY SURFACES; DOUBLE-RESONANCE; INFRARED-SPECTROSCOPY; VIBRATIONAL SPECTROSCOPY; GAS-PHASE; COMPLEXES; CLUSTERS; WATER;
D O I
10.1016/j.molstruc.2014.07.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of hydration on a flexible amphiphilic molecule has been studied on the example of 1-hydroxyindan (1-indanol). Studies in jet-cooled conditions by means of resonance-enhanced two-photon ionization and IR-UV double resonance experiments show that the mono-hydrate 1-indanol(H2O) is formed in a dominant isomer, as well as the di-hydrate 1-indanol(H2O)(2). 1-Indanol(H2O) favors a cooperative hydrogen bond pattern with -OH center dot center dot center dot O(H)-H center dot center dot center dot pi it topology, while 1-indanol(H2O)(2) forms a cyclic hydrogen bond network with three OH center dot center dot center dot O interactions. The single conformation observed for the hydrates contrasts with the bare molecule which shows two dominant conformations, with the hydroxyl in axial or in equatorial position, respectively. Hydration therefore results in a restriction of the conformational space and conformational locking. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:344 / 351
页数:8
相关论文
共 50 条
  • [1] High-resolution UV spectroscopy of 1-indanol
    Hernandez-Castillo, A. O.
    Bischoff, Johannes
    Lee, Ju Hyeon
    Langenhan, Jennifer
    Karra, Mallikarjun
    Meijer, Gerard
    Eibenberger-Arias, Sandra
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (12) : 7048 - 7056
  • [2] IR Spectroscopy on Jet-Cooled Isolated Two-Station Rotaxanes
    Rijs, Anouk M.
    Kay, Euan R.
    Leigh, David A.
    Buma, Wybren Jan
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (34): : 9669 - 9675
  • [3] Overtone spectroscopy of jet-cooled phenol studied by nonresonant ionization detected IR spectroscopy
    Ishiuchi, S
    Fujii, M
    [J]. RESONANCE IONIZATION SPECTROSCOPY, 1998, 454 : 137 - 142
  • [4] UV-IR double-resonance spectroscopy of jet-cooled propynal detected by the fluorescence dip method
    Walther, T.
    Bitto, H.
    Minton, T. K.
    Huber, J. R.
    [J]. Atmospheric Research, 357
  • [5] UV-IR DOUBLE-RESONANCE SPECTROSCOPY OF JET-COOLED PROPYNAL DETECTED BY THE FLUORESCENCE DIP METHOD
    WALTHER, T
    BITTO, H
    MINTON, TK
    HUBER, JR
    [J]. CHEMICAL PHYSICS LETTERS, 1994, 231 (01) : 64 - 69
  • [6] SPECTROSCOPY AND DYNAMICS OF JET-COOLED 1,1'-BINAPHTHYL
    JONKMAN, HT
    WIERSMA, DA
    [J]. CHEMICAL PHYSICS LETTERS, 1983, 97 (03) : 261 - 264
  • [7] CONFORMATIONAL-ANALYSIS OF JET-COOLED TRYPTOPHAN ANALOGS BY ROTATIONAL COHERENCE SPECTROSCOPY
    CONNELL, LL
    CORCORAN, TC
    JOIREMAN, PW
    FELKER, PM
    [J]. CHEMICAL PHYSICS LETTERS, 1990, 166 (5-6) : 510 - 516
  • [8] How do Pseudoenantiomers Structurally Differ in the Gas Phase? An IR/UV Spectroscopy Study of Jet-Cooled Hydroquinine and Hydroquinidine
    Sen, Ananya
    Lepere, Valeria
    Le Barbu-Debus, Katia
    Zehnacker, Anne
    [J]. CHEMPHYSCHEM, 2013, 14 (15) : 3559 - 3568
  • [9] Isotopomer-selective overtone spectroscopy by ionization detected IR+UV double resonance of jet-cooled aniline
    Fehrensen, B
    Hippler, M
    Quack, M
    [J]. CHEMICAL PHYSICS LETTERS, 1998, 298 (4-6) : 320 - 328
  • [10] UV LASER-EXCITED FLUORESCENCE SPECTROSCOPY OF THE JET-COOLED COPPER DIMER
    ROHLFING, EA
    VALENTINI, JJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (12): : 6560 - 6566