Equivariant functions and vector-valued modular forms

被引:7
|
作者
Saber, Hicham [1 ]
Sebbar, Abdellah [1 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
关键词
Equivariant forms; vector-modular forms; Schwarz derivative; monodromy;
D O I
10.1142/S1793042114500092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any discrete group G and any two-dimensional complex representation. of G, we introduce the notion of rho-equivariant functions, and we show that they are parametrized by vector-valued modular forms. We also provide examples arising from the monodromy of differential equations.
引用
收藏
页码:949 / 954
页数:6
相关论文
共 50 条
  • [1] Vector-valued Modular Forms
    Bantay, P.
    VERTEX OPERATOR ALGEBRAS AND RELATED AREAS, 2009, 497 : 19 - 31
  • [2] Construction of vector-valued modular integrals and vector-valued mock modular forms
    Gimenez, Jose
    Muhlenbruch, Tobias
    Raji, Wissam
    RAMANUJAN JOURNAL, 2016, 41 (1-3): : 51 - 114
  • [3] Construction of vector-valued modular integrals and vector-valued mock modular forms
    Jose Gimenez
    Tobias Mühlenbruch
    Wissam Raji
    The Ramanujan Journal, 2016, 41 : 51 - 114
  • [4] Heat equation for theta functions and vector-valued modular forms
    Sara Perna
    manuscripta mathematica, 2018, 157 : 81 - 99
  • [5] Heat equation for theta functions and vector-valued modular forms
    Perna, Sara
    MANUSCRIPTA MATHEMATICA, 2018, 157 (1-2) : 81 - 99
  • [6] Logarithmic vector-valued modular forms
    Knopp, Marvin
    Mason, Geoffrey
    ACTA ARITHMETICA, 2011, 147 (03) : 261 - 282
  • [7] EXTENSIONS OF VECTOR-VALUED MODULAR FUNCTIONS
    HUNEYCUT.JE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 186 - &
  • [8] Modular flavor symmetry and vector-valued modular forms
    Liu, Xiang-Gan
    Ding, Gui-Jun
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
  • [9] Modular flavor symmetry and vector-valued modular forms
    Xiang-Gan Liu
    Gui-Jun Ding
    Journal of High Energy Physics, 2022
  • [10] On vector-valued modular forms and their Fourier coefficients
    Knopp, M
    Mason, G
    ACTA ARITHMETICA, 2003, 110 (02) : 117 - 124