MVSNet: Depth Inference for Unstructured Multi-view Stereo

被引:631
|
作者
Yao, Yao [1 ]
Luo, Zixin [1 ]
Li, Shiwei [1 ]
Fang, Tian [2 ]
Quan, Long [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[2] Shenzhen Zhuke Innovat Technol Altizure, Shenzhen, Peoples R China
来源
关键词
Multi-view stereo; Depth map; Deep learning; RECONSTRUCTION;
D O I
10.1007/978-3-030-01237-3_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an end-to-end deep learning architecture for depth map inference from multi-view images. In the network, we first extract deep visual image features, and then build the 3D cost volume upon the reference camera frustum via the differentiable homography warping. Next, we apply 3D convolutions to regularize and regress the initial depth map, which is then refined with the reference image to generate the final output. Our framework flexibly adapts arbitrary N-view inputs using a variance-based cost metric that maps multiple features into one cost feature. The proposed MVSNet is demonstrated on the large-scale indoor DTU dataset. With simple post-processing, our method not only significantly outperforms previous state-of-the-arts, but also is several times faster in runtime. We also evaluate MVSNet on the complex outdoor Tanks and Temples dataset, where our method ranks first before April 18, 2018 without any fine-tuning, showing the strong generalization ability of MVSNet.
引用
收藏
页码:785 / 801
页数:17
相关论文
共 50 条
  • [1] Recurrent MVSNet for High-resolution Multi-view Stereo Depth Inference
    Yao, Yao
    Luo, Zixin
    Li, Shiwei
    Shen, Tianwei
    Fang, Tian
    Quan, Long
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5520 - 5529
  • [2] DRI-MVSNet: A depth residual inference network for multi-view stereo images
    Li, Ying
    Li, Wenyue
    Zhao, Zhijie
    Fan, JiaHao
    [J]. PLOS ONE, 2022, 17 (03):
  • [3] DEMVSNet: Denoising and depth inference for unstructured multi-view stereo on noised images
    Han, Jiawei
    Chen, Xiaomei
    Zhang, Yongtian
    Hou, Weimin
    Hu, Zibo
    [J]. IET COMPUTER VISION, 2022, 16 (07) : 570 - 580
  • [4] DS-MVSNet: Unsupervised Multi-view Stereo via Depth Synthesis
    Li, Jingliang
    Lu, Zhengda
    Wang, Yiqun
    Wang, Ying
    Xiao, Jun
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5593 - 5601
  • [5] PSP-MVSNet: Deep Patch-Based Similarity Perceptual for Multi-view Stereo Depth Inference
    Jie, Leiping
    Zhang, Hui
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT I, 2022, 13529 : 316 - 328
  • [6] ARAI-MVSNet: A multi-view stereo depth estimation network with adaptive depth range and depth interval
    Zhang, Song
    Xu, Wenjia
    Wei, Zhiwei
    Zhang, Lili
    Wang, Yang
    Liu, Junyi
    [J]. PATTERN RECOGNITION, 2023, 144
  • [7] Recurrent Multi-view Stereo Depth Inference with Pyramid of Images
    Wang, Xiaobao
    Dong, Enzeng
    Tong, Jigang
    Sun, Zhe
    Li, Wenyu
    Duan, Feng
    [J]. PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 259 - 263
  • [8] EPP-MVSNet: Epipolar-assembling based Depth Prediction for Multi-view Stereo
    Ma, Xinjun
    Gong, Yue
    Wang, Qirui
    Huang, Jingwei
    Chen, Lei
    Yu, Fan
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5712 - 5720
  • [9] NR-MVSNet: Learning Multi-View Stereo Based on Normal Consistency and Depth Refinement
    Li, Jingliang
    Lu, Zhengda
    Wang, Yiqun
    Xiao, Jun
    Wang, Ying
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 2649 - 2662
  • [10] Pixelwise View Selection for Unstructured Multi-View Stereo
    Schonberger, Johannes L.
    Zheng, Enliang
    Frahm, Jan-Michael
    Pollefeys, Marc
    [J]. COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 501 - 518