Tournaments as strong subcontractions

被引:4
|
作者
Jagger, C [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT PURE MATH & MATH STAT,CAMBRIDGE CB2 1SB,ENGLAND
关键词
D O I
10.1016/S0012-365X(97)81803-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine good bounds for the maximum size of a digraph which has no strong subcontraction to a tournament T-p of order p. In particular, we shall show that for a transitive tournament, denoted TTp, then given any p and epsilon > 0, there exists no such that for all n greater than or equal to n(0), if digraph D has order n and at least (n/2)(1 - 1/(p - 1) + epsilon) edges, then D >(s) TTp, where >(s) denotes strong subcontraction. This uses a Turan type of argument. We also get some exact results for strong subcontraction of complete digraphs.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 50 条
  • [1] Kings in strong tournaments
    Wang, Ruixia
    Wang, Shiying
    [J]. ARS COMBINATORIA, 2016, 126 : 351 - 358
  • [2] Quadrangularity and strong quadrangularity in tournaments
    Lundgren, J. Richard
    Reid, K. B.
    Severini, Simone
    Stewart, Dustin J.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 34 : 247 - 260
  • [3] SPANNING PATHS IN STRONG TOURNAMENTS
    MOON, JW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A39 - A39
  • [4] The existence and uniqueness of strong kings in tournaments
    Chen, An-Hang
    Chang, Jou-Ming
    Cheng, Yuwen
    Wang, Yue-Li
    [J]. DISCRETE MATHEMATICS, 2008, 308 (12) : 2629 - 2633
  • [5] Strong tournaments with the fewest Hamiltonian paths
    Moon, J. W.
    Yang, Laura L. M.
    [J]. UTILITAS MATHEMATICA, 2007, 72 : 193 - 198
  • [6] Strong subtournaments and cycles of multipartite tournaments
    Paulina Figueroa, Ana
    Jose Montellano-Ballesteros, Juan
    Olsen, Mika
    [J]. DISCRETE MATHEMATICS, 2016, 339 (11) : 2793 - 2803
  • [7] SOME UNAVOIDABLE SUBGRAPHS OF STRONG TOURNAMENTS
    PETROVIC, V
    [J]. COMBINATORICS /, 1988, 52 : 423 - 426
  • [8] CYCLES IN K-STRONG TOURNAMENTS
    GOLDBERG, M
    MOON, JW
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (01) : 89 - &
  • [9] A note on the number of Hamiltonian paths in strong tournaments
    Busch, AH
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [10] Tournaments and the strong Erdos-Hajnal Property
    Berger, Eli
    Choromanski, Krzysztof
    Chudnovsky, Maria
    Zerbib, Shira
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2022, 100