Treewidth of the Kneser Graph and the Erdos-Ko-Rado Theorem

被引:0
|
作者
Harvey, Daniel J. [1 ]
Wood, David R. [2 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic, Australia
[2] Monash Univ, Sch Math Sci, Melbourne, Vic 3004, Australia
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2014年 / 21卷 / 01期
基金
澳大利亚研究理事会;
关键词
graph theory; Kneser graph; treewidth; separators; Erdos-Ko-Rado; INTERSECTING FAMILIES; SETS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Treewidth is an important and well-known graph parameter that measures the complexity of a graph. The Kneser graph Kneser(n, k) is the graph with vertex set (([n])(k)), such that two vertices are adjacent if they are disjoint. We determine, for large values of n with respect to k, the exact treewidth of the Kneser graph. In the process of doing so, we also prove a strengthening of the Erdos-Ko-Rado Theorem (for large n with respect to k) when a number of disjoint pairs of k-sets are allowed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An Erdos-Ko-Rado theorem for multisets
    Meagher, Karen
    Purdy, Alison
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [2] A generalization of the Erdos-Ko-Rado theorem
    Alishahi, Meysam
    Hajiabolhassan, Hossein
    Taherkhani, Ali
    [J]. DISCRETE MATHEMATICS, 2010, 310 (01) : 188 - 191
  • [3] On the stability of the Erdos-Ko-Rado theorem
    Bollobas, Bela
    Narayanan, Bhargav P.
    Raigorodskii, Andrei M.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 137 : 64 - 78
  • [4] BEYOND THE ERDOS-KO-RADO THEOREM
    FRANKL, P
    FUREDI, Z
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1991, 56 (02) : 182 - 194
  • [5] A BIPARTITE ERDOS-KO-RADO THEOREM
    SIMPSON, JE
    [J]. DISCRETE MATHEMATICS, 1993, 113 (1-3) : 277 - 280
  • [6] ON ''STABILITY" IN THE ERDOS-KO-RADO THEOREM
    Devlin, Pat
    Kahn, Jeff
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (02) : 1283 - 1289
  • [7] Extending the Erdos-Ko-Rado theorem
    Tokushige, N
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2006, 14 (01) : 52 - 55
  • [8] On the Stability of the Erdos-Ko-Rado Theorem
    Pyaderkin, M. M.
    [J]. DOKLADY MATHEMATICS, 2015, 91 (03) : 290 - 293
  • [9] A generalization of the Erdos-Ko-Rado theorem
    Hegedus, Gabor
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 66 : 256 - 264
  • [10] Extending the Erdos-Ko-Rado Theorem
    College of Education, Ryukyu University, Nishihara, Okinawa, 903-0213, Japan
    [J]. J Comb Des, 2006, 1 (52-55):