A coupled multipoint stress-multipoint flux mixed finite element method for the Biot system of poroelasticity

被引:14
|
作者
Ambartsumyan, Ilona [1 ,2 ]
Khattatov, Eldar [1 ,2 ]
Yotov, Ivan [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
Mixed finite elements; Cell-centered finite differences; Multipoint stress; Multipoint flux; Poroelasticity; VOLUME DISCRETIZATION; CONSOLIDATION MODEL; LINEAR ELASTICITY; ERROR ANALYSIS; CONVERGENCE; LOCKING; MEDIA;
D O I
10.1016/j.cma.2020.113407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a mixed finite element method for a five-field formulation of the Biot system of poroelasticity that reduces to a cell-centered pressure-displacement system on simplicial and quadrilateral grids. A mixed stress-displacement-rotation formulation for elasticity with weak stress symmetry is coupled with a mixed velocity-pressure Darcy formulation. The spatial discretization is based on combining the multipoint stress mixed finite element (MSMFE) method for elasticity and the multipoint flux mixed finite element (MFMFE) method for Darcy flow. It uses the lowest order Brezzi-Douglas-Marini mixed finite element spaces for the poroelastic stress and Darcy velocity, piecewise constant displacement and pressure, and continuous piecewise linear or bilinear rotation. A vertex quadrature rule is applied to the velocity, stress, and stress-rotation bilinear forms, which block-diagonalizes the corresponding matrices and allows for local velocity, stress, and rotation elimination. This leads to a cell-centered positive-definite system for pressure and displacement at each time step. We perform error analysis for the semidiscrete and fully discrete formulations, establishing first order convergence for all variables in their natural norms. The numerical tests confirm the theoretical convergence rates and illustrate the locking-free property of the method. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] A multipoint stress-flux mixed finite element method for the Stokes-Biot model
    Caucao, Sergio
    Li, Tongtong
    Yotov, Ivan
    [J]. NUMERISCHE MATHEMATIK, 2022, 152 (02) : 411 - 473
  • [2] A multipoint stress-flux mixed finite element method for the Stokes-Biot model
    Sergio Caucao
    Tongtong Li
    Ivan Yotov
    [J]. Numerische Mathematik, 2022, 152 : 411 - 473
  • [3] A multipoint flux mixed finite element method
    Wheeler, Mary F.
    Yotov, Ivan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) : 2082 - 2106
  • [4] A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD ON HEXAHEDRA
    Ingram, Ross
    Wheeler, Mary F.
    Yotov, Ivan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (04) : 1281 - 1312
  • [5] Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity
    Wheeler, Mary
    Xue, Guangri
    Yotov, Ivan
    [J]. COMPUTATIONAL GEOSCIENCES, 2014, 18 (01) : 57 - 75
  • [6] Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity
    Mary Wheeler
    Guangri Xue
    Ivan Yotov
    [J]. Computational Geosciences, 2014, 18 : 57 - 75
  • [7] A MULTISCALE MORTAR MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD
    Wheeler, Mary Fanett
    Xue, Guangri
    Yotov, Ivan
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04): : 759 - 796
  • [8] MIXED AND MULTIPOINT FINITE ELEMENT METHODS FOR ROTATION-BASED POROELASTICITY
    Boon, Wietse M.
    Fumagalli, Alessio
    Scotti, Anna
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (05) : 2485 - 2508
  • [9] A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra
    Wheeler, Mary
    Xue, Guangri
    Yotov, Ivan
    [J]. NUMERISCHE MATHEMATIK, 2012, 121 (01) : 165 - 204
  • [10] A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra
    Mary Wheeler
    Guangri Xue
    Ivan Yotov
    [J]. Numerische Mathematik, 2012, 121 : 165 - 204