Full rank factorization of row(column) symmetric matrix

被引:0
|
作者
Yuan, Hui-ping [1 ]
机构
[1] Chongqing Technol & Business Univ, Sch Sci, Chongqing 400067, Peoples R China
关键词
row (column) transposed matrix; row (column) symmetric matrix; full rank factorization;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of row (column) transposed matrix and row (column) symmetric matrix are given, their basic property are studied, and many new results are obtained. and the formula that the full rank factorization of row (column) symmetric matrix are given, they can reduce dramatically the amount of calculation that rank factorization of row (column) symmetric matrix, can save dramatically the CPU time and memory without loss of any numerical precision.
引用
收藏
页码:335 / 338
页数:4
相关论文
共 50 条
  • [1] QR factorization for row or column symmetric matrix
    Zou, HX
    Wang, DJ
    Dai, QH
    Li, YD
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (01): : 83 - 90
  • [2] QR factorization for row or column symmetric matrix
    邹红星
    戴琼海
    李衍达
    王殿军
    [J]. ScienceinChina,Ser.A., 2003, Ser.A.2003 (01) - 90
  • [3] QR factorization for row or column symmetric matrix
    邹红星
    戴琼海
    李衍达
    王殿军
    [J]. Science China Mathematics, 2003, (01) : 83 - 90
  • [4] QR factorization for row or column symmetric matrix
    Hongxing Zou
    Dianjun Wang
    Qionghai Dai
    Yanda Li
    [J]. Science in China Series A: Mathematics, 2003, 46 : 83 - 90
  • [5] Schur Factorization of Row (column) Skew-symmetric Matrix
    Yuan, Hui-Ping
    Mi, Ling
    [J]. ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 382 - 385
  • [6] Triple Diagonal Factorization for Row (Column) Skew Symmetric Matrix
    Yuan, Huiping
    Mi, Ling
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 140 - 143
  • [7] Triangular Factorization of Strongly Row (Column) Full Rank Linear Equations
    Liu Hongxia
    Feng Tianxiang
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 789 - 793
  • [8] The Column-Row Factorization of a Matrix
    Strang, Gilbert
    [J]. JOURNAL OF CONVEX ANALYSIS, 2021, 28 (02) : 725 - 728
  • [9] SVD row or column symmetric matrix
    ZOU Hongxing
    Department of Mathematical Sciences
    [J]. Science Bulletin, 2000, (22) : 2042 - 2044
  • [10] SVD row or column symmetric matrix
    Zou, HX
    Wang, DJ
    Dai, QH
    Li, YD
    [J]. CHINESE SCIENCE BULLETIN, 2000, 45 (22): : 2042 - 2044