All-ceramic ball bearings with silicone nitride balls and silicone nitride rings were tested and the vibration characleristics were compared with those of hybrid ceramic ball bearings and conventional steel ball bearings. The vibration measurement results showed that the overall vibratory velocity levels of the all-ceramic ball bearings are influenced by rotational velocities, and do not change with a-vial loads. Under a given axial load and rotational velocity, the overall vibratory velocity level of the all-ceramic ball bearing is the lowest, and the hybrid ball bearing the highest. The frequencies of main peaks in the measured vibration spectra of the all-ceramic ball bearing are higher than the frequencies of the corresponding main peaks for the It hybrid ceramic ball bearing and the steel ball bearing. To explain the main peaks, modal analysis was done and the relationship between peak and natural vibration was analyzed. The results of the analyses showed that the main peaks are caused by: (1) the mass-type natural vibration of the outer ring ill the vertical direction, (2) the bending natural vibration of the outer ring ill the radial direction, (3) the moment of inertia-type natural vibration of the outer ring in the angular direction, (4) the mass-type natural vibration of the outer ring ill the axial direction, and (5) the bending natural vibration of the outer ring in the axial direction. We also discuss the generating mechanism of the vibration and present the calculation method of the vibration spectra. As a result, it is clear that the vibration spectra of the all-ceramic ball bearing are determined by the amplitude of the waviness of the raceways and ball surface, the mobility, and the non-linear spring constant associated with the contact between the raceways and balls.