MATHEMATICAL MODELLING OF TUBERCULOSIS EPIDEMICS

被引:59
|
作者
Pablo Aparicio, Juan [1 ,2 ]
Castillo-Chavez, Carlos [3 ,4 ,5 ,6 ]
机构
[1] Univ Metropolitana, Sch Sci & Technol, San Juan, PR 00928 USA
[2] Univ Nacl Salta, Inst Invest Energias Convenc, RA-4400 Salta, Argentina
[3] Sch Human Evolut & Social Change, Tempe, AZ 85287 USA
[4] Math Computat & Modeling Sci Ctr, Tempe, AZ 85287 USA
[5] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[6] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
tuberculosis; non-autonomous systems; stochastic models; demography; BRIEF EPIDEMIOLOGIC HISTORY; DISEASE; DYNAMICS; TRANSMISSION; ARCANA; USA; REINFECTION; INFECTIVITY; RESISTANCE; MORTALITY;
D O I
10.3934/mbe.2009.6.209
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The strengths and limitations of using homogeneous mixing and heterogeneous mixing epidemic models are explored in the context of the transmission dynamics of tuberculosis. The focus is on three types of models: a standard incidence homogenous mixing model, a non-homogeneous mixing model that incorporates 'household' contacts, and an age-structured model. The models are paramaterized using demographic and epidemiological data and the patterns generated from these models are compared. Furthermore, the effects of population growth, stochasticity, clustering of contacts, and age structure on disease dynamics are explored. This framework is used to asses the possible causes for the observed historical decline of tuberculosis notifications.
引用
收藏
页码:209 / 237
页数:29
相关论文
共 50 条
  • [1] On mathematical modelling of temporal spatial spread of epidemics***
    Khachatryan, Kh A.
    Narimanyan, A. Zh
    Khachatryan, A. Kh
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2020, 15
  • [2] Mathematical Modelling of the Epidemiology of Tuberculosis
    White, Peter J.
    Garnett, Geoff P.
    [J]. MODELLING PARASITE TRANSMISSION AND CONTROL, 2010, 673 : 127 - 140
  • [3] The benefits and risks of mathematical modelling in tuberculosis
    Cox, Helen S.
    [J]. INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2014, 18 (05) : 507 - 507
  • [4] EPIDEMICS OF TUBERCULOSIS
    LINCOLN, EM
    [J]. ARCHIVES OF ENVIRONMENTAL HEALTH, 1967, 14 (03): : 473 - &
  • [5] EPIDEMICS OF TUBERCULOSIS
    不详
    [J]. MEDICAL JOURNAL OF AUSTRALIA, 1962, 1 (13) : 488 - &
  • [6] Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis
    Kendall, Emily A.
    Fofana, Mariam O.
    Dowdy, David W.
    [J]. LANCET RESPIRATORY MEDICINE, 2015, 3 (12): : 963 - 972
  • [7] MODELLING EPIDEMICS AND VIRUS MUTATIONS BY METHODS OF THE MATHEMATICAL KINETIC THEORY FOR ACTIVE PARTICLES
    De Lillo, S.
    Delitala, M.
    Salvatori, M. C.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 : 1405 - 1425
  • [8] Mathematical Modelling of Multidrug-Resistant Tuberculosis with Vaccination
    Suddin, S.
    Bano, E. N.
    Yanni, M. H.
    [J]. MATEMATIKA, 2021, 37 (03): : 109 - 120
  • [9] When Do Epidemics End? Scientific Insights from Mathematical Modelling Studies
    Linton, Natalie M.
    Lovell-Read, Francesca A.
    Southall, Emma
    Lee, Hyojung
    Akhmetzhanov, Andrei R.
    Thompson, Robin N.
    Nishiura, Hiroshi
    [J]. CENTAURUS, 2022, 64 (01) : 31 - 59
  • [10] SEARCH FOR EPIDEMICS OF TUBERCULOSIS
    ANDERSON, AW
    GRENVILLEMATHERS, R
    [J]. LANCET, 1952, 263 (AUG16): : 330 - 331