Quantum simulation and computing with Rydberg-interacting qubits

被引:146
|
作者
Morgado, M.
Whitlock, S. [1 ]
机构
[1] Univ Strasbourg, Inst Sci & Ingn Supramol ISIS, UMR7006, Strasbourg, France
来源
AVS QUANTUM SCIENCE | 2021年 / 3卷 / 02期
关键词
INDIVIDUAL NEUTRAL ATOMS; ADIABATIC PASSAGE; RANDOMIZED BENCHMARKING; COHERENT EXCITATION; ENERGY-TRANSPORT; ERROR-CORRECTION; ENTANGLING GATE; DYNAMICS; ENTANGLEMENT; INFORMATION;
D O I
10.1116/5.0036562
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Arrays of optically trapped atoms excited to Rydberg states have recently emerged as a competitive physical platform for quantum simulation and computing, where high-fidelity state preparation and readout, quantum logic gates, and controlled quantum dynamics of more than 100 qubits have all been demonstrated. These systems are now approaching the point where reliable quantum computations with hundreds of qubits and realistically thousands of multiqubit gates with low error rates should be within reach for the first time. In this article, the authors give an overview of the Rydberg quantum toolbox, emphasizing the high degree of flexibility for encoding qubits, performing quantum operations, and engineering quantum many-body Hamiltonians. The authors then review the state-of-the-art concerning high-fidelity quantum operations and logic gates as well as quantum simulations in many-body regimes. Finally, the authors discuss computing schemes that are particularly suited to the Rydberg platform and some of the remaining challenges on the road to general purpose quantum simulators and quantum computers.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Assembled arrays of Rydberg-interacting atoms
    Schlosser, Malte
    Ohl de Mello, Daniel
    Schaeffner, Dominik
    Preuschoff, Tilman
    Kohfahl, Lars
    Birkl, Gerhard
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (14)
  • [2] An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems
    C. S. Hofmann
    G. Günter
    H. Schempp
    N. L. M. Müller
    A. Faber
    H. Busche
    M. Robert-de-Saint-Vincent
    S. Whitlock
    M. Weidemüller
    [J]. Frontiers of Physics, 2014, 9 : 571 - 586
  • [3] An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems
    Hofmann, C. S.
    Guenter, G.
    Schempp, H.
    Mueller, N. L. M.
    Faber, A.
    Busche, H.
    Robert-de-Saint-Vincent, M.
    Whitlock, S.
    Weidemueller, M.
    [J]. FRONTIERS OF PHYSICS, 2014, 9 (05) : 571 - 586
  • [4] Quantum computing with atomic qubits and Rydberg interactions: progress and challenges
    Saffman, M.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (20)
  • [5] Sub-Poissonian Statistics of Rydberg-Interacting Dark-State Polaritons
    Hofmann, C. S.
    Guenter, G.
    Schempp, H.
    Robert-de-St-Vincent, M.
    Gaerttner, M.
    Evers, J.
    Whitlock, S.
    Weidemueller, M.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (20)
  • [6] Quantum transfer of interacting qubits
    Apollaro, Tony J. G.
    Lorenzo, Salvatore
    Plastina, Francesco
    Consiglio, Mirko
    Zyczkowski, Karol
    [J]. NEW JOURNAL OF PHYSICS, 2022, 24 (08):
  • [7] Quantum simulation of pairing Hamiltonians with nearest-neighbor-interacting qubits
    Wang, Zhixin
    Gu, Xiu
    Wu, Lian-Ao
    Liu, Yu-xi
    [J]. PHYSICAL REVIEW A, 2016, 93 (06)
  • [8] QUANTUM COMPUTING Silicon qubits
    Maragkou, Maria
    [J]. NATURE MATERIALS, 2015, 14 (05) : 468 - 468
  • [9] Quantum computing with spin qubits interacting through delocalized excitons: Overcoming hole mixing
    Lovett, BW
    Nazir, A
    Pazy, E
    Barrett, SD
    Spiller, TP
    Briggs, GAD
    [J]. PHYSICAL REVIEW B, 2005, 72 (11)
  • [10] A boost to Rydberg quantum computing
    Li, Wenhui
    [J]. NATURE PHYSICS, 2020, 16 (08) : 820 - 821