DISTRIBUTION OF VALUES OF L′/L(σ, χD)

被引:9
|
作者
Mourtada, Mariam [1 ]
Murty, V. Kumar [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
L-functions; logarithmic derivatives; distribution of values; Rienmann Hypothesis; L'/L;
D O I
10.17323/1609-4514-2015-15-3-497-509
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the distribution of values of I L (sigma, chi(D)) where sigma is real > 1/2 a fundamental discriminant, and chi(D) the real character attached to D In particular, assuming the GRH, we prove that for each sigma > 1/2 there is a density function Q(sigma) with the property that for real numbers alpha <= beta, we have #{D fundamental discriminants such that vertical bar D vertical bar <= Y, and alpha <= L'/L (sigma, chi(D)) <= beta} similar to 6/pi(2)root 2 pi Y integral(beta)(alpha) Q(sigma)(x)dx. Our work is based on and strongly motivated by the earlier work of Ihara and 'Matsumoto [7].
引用
收藏
页码:497 / 509
页数:13
相关论文
共 50 条