Quadrature for Self-affine Distributions on Rd

被引:0
|
作者
Dereich, Steffen [1 ]
Mueller-Gronbach, Thomas [2 ]
机构
[1] Univ Munster, Inst Stat Math, Fachbere Math & Informat 10, D-48149 Munster, Germany
[2] Univ Passau, Fak Informat & Math, D-94032 Passau, Germany
关键词
Self-similar distribution; Numerical integration; Lower error bounds; Effective dimension; Cutset; Fractal;
D O I
10.1007/s10208-014-9233-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article presents a systematic treatment of quadrature problems for self-similar probability distributions. We introduce explicit deterministic and randomized algorithms and study their errors for integrands of fractional smoothness of Holder-Lipschitz type. Conversely, we derive lower bounds for worst-case errors of arbitrary integration schemes that prove optimality of our algorithms in many cases. In particular, we see that the effective dimension of the quadrature problem for functions of smoothness q > 0 is given by the quantization dimension of order q of the fractal measure.
引用
收藏
页码:1465 / 1500
页数:36
相关论文
共 50 条